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PREFACE

Stability and Control is that branch of the aeronautical sciences
that is concerned with giving the pilot an aircraft with good handling
qualities. As aircraft have been designed to meet greater performance
specifications, new problems in Stability and Control have been en-
countered. The solving of these problems has advanced the science of
Stability and Control to the point it is today.

This handbook has been compiled by the instructors of the USAF Test
Pilot School for use in the Stability and Control portion of the School's
course. Most of the material in Volume I of this handbook has been ex-
tracted from several reference books and is oriented towards the test
pilot. The flight test techniques and data reduction methods in Volume
11 have been developed at the Air Force Flight Test Center, Edwards Air
Force Base, California. This handbook is primarily intended to be used
as an academic text in our School, but if it can be helpful to anyone in
the conduct of Stability and Control testing, be our guest,

//{/Zitixﬂc tf<f gc/{? Z‘jz} A~

WARWICK H.” GLASGOW L
Colonel, USAF N
Commandant, USAF Test Pilot School
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DIFFERENTIAL EQUATIONS

VOLUME I

CHAPTER

REVISED FEBRUARY 1977

list of abbreviations and symbols

Item

X,Y,2

.6

xtlytlzt

X Y. .2

X(s),¥(s),2(s)

A

Definition

variables

time in seconds

differential operator with dimensions of (s‘»econds)_l
constant equal to /=T

angular constant in radians
1

constant equal to lim (1 + x)% =2.71828. . . . .
x +- 0

transient solution to differential equation

particular (steady state) solution to differential
equation

the dot notation indicates differentiation with

respect to time, as in x = g%

time constant in seconds

time to half amplitude in seconds

damping ratio

undamped natural frequency in radians per second
damped frequency in radians per second

Laplace variable with dimensions of (.secomis)-1
Laplace transform

inverse Laplace transform

Laplace transform of x(t), y(t), z(t)

symbol used for definitions, such as x & g% means x

. . dx
is defined as Ic
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W11 INTRGOUCTION

The theory of differential equations is a subject of considerable
scope, ranging from the rather simple and obvious through the abstract
and not so obvious. One can spend a lifeime studying the subject, and
a few people have, We have neither the time, nor perhaps the inclina-
tion for such devotions., Our purpose is to cover those aspects of the
theory of differential equations which are of direct application to
work at the school.

These notes deal with the tools and techniques required to analyze
differential equations. Such techniques are easily extended for use in
the study of aircraft dynamics, An aircraft in flight displays motions
similar to a mass-spring-damper system (figure 1.1)., The static stability
of the airplane is similar to the spring, the moments of inertia similar
to the mass, and the airflow serves to damp the aircraft motion.
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Figure 1.1

This first section provides a review of basic differential equation
theory. Succeeding sections deal with operator techniques, analysis of
first and second order systems, use of Laplace transforms, and solution
of simultaneous equations,

Before proceeding with our study, we shall define several terms
which will be used in these notes.

Differential Equation - An equation which involves a dependent variable
(or variables) together with one or more of its derivatives with respect
to an independent variable (or variables).
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Solution - Any function, free of derivatives, which satisfies a differen-
tial equation is said to be a solution of the differential eguation.

Ordinary Differential Equation - A differential equation which involves
derivatives with respect to a single independent variable is called an
ordinary differential equation.

Order - The nth derivative of a depeident variable is called a derivative

Of order n, or an nth order derivative. The order of a differential equa-

tion is the order of the highest order derivative present.

Degree - The exponent of the highest order derivative is called the de-
gree of the differential equation.

Linear Differential Equation (ordinary, single dependent variable) - A
Jdifferential equation in which the dependent variable and 1its derivatives
appear in no higher than the 1lst degree, and the coefficients are either
constants or functions of the independent variable, is called a linear
differential equation.

Linear System - Any physical system that can be described by a linear
Jdifferential equation is called a linear system.

General Solution - A solution of a differential equation of order n
#hich contains n arbitrary constants will be called a general solution
of the differential equation.

B 1.2 REVIEW OF BASIC PRINCIPLES

Before investigating operator notation and Laplace transforms, let's
review the more basic methods of solving differential equations.

@121 DIRECT INTEGRATION

To solve a differential equation we seek a mathematical expression,
relating the variables appearing in the differential equation, which
qualifies as a solution under the definitions given above. A first
thought or inspiration may be: since we are presented with an equation
containing derivatives, a solution may be obtained by antidifferentiating
or integration. This process removes derivatives and provides arbitrary
constants.

EXAMPLE
Given
rewriting
dy = (x + 4)dx

13




integrating
dy = (x + 4)dx
gives us

2
y=§_+4x+c

EXAMPLE
Given
2
d”y _
dx
Assume
1
dzy . 9y
2 dx
dx
where
d
then
daly') _
xS x4
or d(y') = (x + 4)dx
then
_ dy x2

U =
Y Ix > + 4x + Cl

integrating again

2
— X
jgy = j?;— + 4x + cl) dx + C,
giving

3
X

Yy = g+ 2x2 + Clx + C2

1.4

(1.1)

(1.2)




Equations 1.1 and 1.2 gqualify as general solutions under the defi-
nition stated earlier,

Life is full of disappointments and we would soon learn that this
direct application of the integration process would fail to work in many

cases,

EXAMPLE
2xy + (x2 + cos y) g% = 0 (1.3)
or
dy = ~2xy dx (1.4)

x_ + cos ¥y

We cannot perform the integration of the term to the right of the
equal sign in equation 1.4. Equation 1.3 can be solved, however, using
straightforward techniques. (x2 + sin y = ¢ is a general solution,) We
emphasize the word "technique" since the solution may rely upon novel

. approaches, special groupings, or "Jjudicious arrangements" and, perhaps,

witchcraft or conjuring. The former require extensive experience and
maturity within the discipline, and the latter talents are rarely endowed
by nature. We shall study a few special differential equations which are
easy to solve and have wide application in the analysis of physical prob-
lems,

@1.2.2 FIRST ORDER EQUATIONS

We shall consider briefly the first order ordinary differential
equation. Suppose we represent such an equation by

F(y', vy, x) =0
where

t = =2
Y dx

This is concise notation used by mathematicians to denote a differential
equation containing an independent variable x, a dependent variable vy,
and the derivative of y with respect to x. The equation may contain the
derivative in differential form.

EXAMPLES

d
W hy
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3x dx + 4y dy = 0
X - ¥
X + v
dy _ X - y cos X
dx sin X + Yy
First order differential equations may be solved by
1. Separating variables and integrating directly.
2. Recognizing exact forms and integrating directly.

3. Finding an integrating factor (fudge factor) which will make the
equation exact,.

4. Inspection, rearrangement of terms, etc., to use method 1 or 2, or
a combination of the two.

These methods are thoroughly treated in all elementary differential
eqguations texts. A brief review of methods 1 and 2 is given below.

@1.2.2.1 SEPARATION OF VARIBLES

When a differential equation can be put in the form

fl(x)dx + fz(y)dy =0 (1.5)

where one term contains functions of x and dx only, and the other func-
tions of y and dy only, the variables are said to be separated. A solu-
tion of egquation 1.5 can then be obtained by direct integration

j}l(dex + J(fz(y)dy = C (1.6)

where C is an arbitrary constant. Note, that for a differential equation
of the first order there is one arbitrary constant. In general, the num-
ber of arbitrary constants is equal to the order of the differential equa-
tion.

EXAMPLE
dy _ X2+ 3x + 4
dx vy + 6
_ 2
(y + 6) dy = (x° + 3x + 4) dx

[(y+6)dy= f(x2+3x+4)dx+c
2

y

al
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©1.2.2.2 EXACT DIFFERENTIAL EQUATION

Associated with each suitably differentiable function of two vari-
ables f(x,y) there is an expression called its total differential,
namely,

_ af of

Conversely, if the differential equation
M(x,y)dx + N(x,y)dy = 0 (1.8)

has the property that

M(x,y) = g—f{' and N(x,y) = %‘;‘

then it can be rewritten in the form
of of _ -
= dx + 3y dy = df 0

from which it follows that

f(x,y) = C

is a solution, Equations of this sort are said to be exact, since, as
they stand, their left members are exact differentials.

A differential equation
M{x,y) dx + N(x,y) dy = 0

is exact if and only if

oM _ 3N
37 < 3% (1.9)

If the differential equation
M(x,y) dx + N(x,y) dy = 0

is exact, then for all values of k,

X Y
j; M(x,y) dx ﬁ]; N(a,y) dy = k (1.10)

is a solution of the equation.




EXAMPLE
Show that the equation

(2% + 3y = 2)dx + (3x - 4y + 1)dy = 0
is exact and find a general solution.
Applying the test, we find

M _ s(2x + 3y - 2) _ 4
3y 3y

3N _ 3(3x - 4y + 1) _ 3
Ix Ix

Since the two partial derivatives are egual, the equation is exact,
Its solution can be found by means of equation 1.10.

X Yy
_/a. (2x + 3y - 2)dx +[b (3a - 4y + 1)dy = k

2 X 2 b4
(x™ + 3xy - 2x) + (3ay -2y° + vy) =k
a b
2 2 2 2 =
(x” + 3xy - 2x) - (a* + 3ay - 2a) + (3ay - 2y“ + y) - (3ab - 2b° + b) =k -
%2 +3xy -2x -2y + y =k + a%> - 2a + 3ab - 2b% + b = K B
@1.2.2.3 FIRST ORDER LINEAR DIFFERENTIAL EQUATIONS
We conclude the discussion of first order equations by considering
the following form
dy =
ax tRx)y =0 (1.11)
where R(x) may be a constant. To solve, merely separate variables,
dy + R(x) dx = 0
Yy
integrating
r [
P& o TR(x) ax + !
J Y -
where
C' =1lnC .

1.8 ‘



Thus

In y = - R(x) dx + 1n C

or

y = ce” 'R(x) dx

If Ris a constant, then

y = ce ~RX (1.12)
We might conclude from this result that a first order differential
equation of form 1.11 with constant coefficients may be solved guite

simply. This is true and the solution will always have the form of
eguation 1.12.

EXAMPLE

dy -
ax * 2y = 0 (1.13)

then we have directly

1

y = Ce ~2.x (1.14)

which is the general solution. It is quickly recognized that the solu-
tion is easily obtained by plugging the negative of the coefficient of
y into the position indicated by the small square.

PROBLEMS: Set I, Nos. 1 and 2, page 1.76.

@13 LINEAR DIFFERENTIAL EQUATIONS AND QPERATOR TECHNIQUES

A form of the differential equation that is of particular interest

is
n n-1
A d'y A .d y A, dy | -
n;—— + n l——H:T + . . .+ 1 I Aoy f(x) (1.15)
X dx
If the coefficient expressions An, BAn-1, . . . , Ag are all functions of -
x only, then equation 1,15 is called a linear differential equation. If
the coefficient expressions Ap, . . . , Ap are all constants, then 1.15

is called a linear differential equation with constant coefficients.




2 d%y dy — ai
X E;Z + 3 Ix + xy sin x

is a linear differential equation.

EXAMPLE

2

d"y dy - X
é~7 + 6 Ix + 9y e
X

is a linear differential equation with constant coefficients, Linear
differential equations with constant coefficients occur frequently in
the analysis of physical systems, Mathematicians and engineers have
developed simple and effective techniques to solve this type of equation
by using either "classical" or operatiocnal methods. When attempting to
sclve a linear differential equation of the form

n n-1

AndK+An-ld _Y.,.....,.Alg}_’_q.p,y:f(x) (1.16)
dx ax" x ©
it is helpful to examine the equation
a vy a1y dy ) -

1.17 is the same as 1.16 with the right hand side zero, We shall refer
to 1.16 as the general equation and equation 1.17 as the complementary
or homogeneous eguation, Solutions of equation 1.17 possess a useful
property known as superposition, which may be briefly stated as follows:
Suppose yj (x) and yp (x) are distinct solutions of 1.17. Then any linear
combination of yj(x) and y;(x) is also a solution of 1.17. A linear

combination would be Clyl(x) + Caya(x).

EXAMPLE
2
d°y _ o 4y _

3x 2x

It can be verified that yj(x) = e is a solution, and that yy(x) = e
is another solution which is distinct from y;(x). Using superposition,

then, y(x) = e3X + c2e2x is also a solution.

€1
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Equation 1.16 may be interpreted as representing a physical system
where the left side of the equation describes the natural or designed
state of the system, and where the right side of the equation represents
the input or forcing function.

One might logically pursue the following line of reasoning in
attempting to find a solution to the problem described by eguation 1.16,

1. A general solution of 1.16 must contain n arbitrary constants and
must satisfy the equation.

2. The following statements are justified by experience:

a. It is reasonably straightforward to find a solution to the com-
plementary equation 1,17, containing n arbitrary constants., Such a
solution will be called the transient solution. Physically, it
represents the response present in the system regardless of input,

b. There are varied technigques for finding a solution of the dif-
ferential equations due to this forcing function. Such solutions
do nct, in general, contain arbitrary constants. This solution
will be called the particular or steady state solution.

3, If we take the transient solution which describes the response
already existing in the system, and then add on the response due
to the forcing function, it would appear that a solution so written
would blend the two responses and describe the total response of
the system represented by 1.16. In fact, the definition of a
general solution is satisfied under such an arrangement, This is
simply an extension of the principle of superposition. The transient
solution contains the correct number of arbitrary constants, and
the particular solution guarantees that the combined soclutions

satisfy the general equation 1.16. Call the transient solution y¢
and the particular solution Yp- A general solution of 1,16 is then
given by

= + .
Y Ye Yp (1.18)

@1.3.1 TRANSIENT SOLUTION

Equation 1.13 is a complementary or homogeneous first order linear
differential equation with constant coefficients. We recognized a quick
and simple method of finding a solution to this equation. We also recog-
nized that the solution was always of exponential form, We might hope
that solutions of higher order equations of the same family would take
the same form,

Let us examine a second order differential equation with constant
coefficients to determine 1if

y = e (1.19)
is a solution of the equation
ay" + by' + cy = 0 (1.20)

1.11




mx

Substituting y = e we have

2 mx
am emx + bmemx + ce =0

or

(am® + bm + c)e™ = ¢ (1.21)

Since emx # 0

am2 + bm+c=20 (1.22)
and
-b + 1/b% - 4ac
mo2 = 73 (1.23)

Substituting these values into our assumed solution we force it to become
a solution,

Y = C,e + C,e (1.24)

When working numerical problems it is not necessary to take the deriva-

tives of emx' if we remember that the dny/dxn is replaced by mp. This

will be true for any order differential equation with constant coeffi-
cients,

We have included the subscript "t" on y to indicate that 1.24
represents the transient solution. From the foregoing it is seen that
we have succeeded in extending the method for first order complementary
equations to higher order complementary or homogeneous equations. Again
we note that we have traded off an integration problem for an algebra
problem (solving equation 1.22 for the m's).

Differential or derivative operators can be defined and manipulated
to play the same role as m above,

If we designate an operator p, p%, . . . , p® as follows:
2 n
d 2 d n d
P=3x P = —5/+ « .+« .+« + P = —¢ (1.25)
X dx
2 n
e}
oty) = &, P = &, ,phy) = X (1.26)
dx dx

1.12



then 1,20 may be written

apz(y) + bply) + cy =0 (1.27)

or, since the derivative operates linearly (each term in succession),

(ap® + bp + )y = 0 (1.28)

and the operator expression (ap2 + bp + ¢) has the same algebraic
structure as 1.22. The operator expression in 1,28 is a polynomial
with precisely the same form as the polynomial on the left side of
1.22, hence it is often solved directly for the constants required in
the solution of 1.18. 1In this case, the transient solution 1.24 would
appear

yt = cleplX + czePZx (1.29)

There are cases for which 1.24 and 1.29 are not entirely satisfactory
in providing a solution, but this will be discussed later., The m's or
p's may be real, imaginary, or complex numbers,

EXAMPLE
2
dy , dy _
o - S
dx

Using operator notation,
(p2 + p -2)y =0
p2 +p -2 =0

p =1, -2
2%

< -
y c,e® + cye

We shall now consider the various cases for solutions of the com-
plementary (homogeneous) equation.

Considetr the equation

dzy dy
a 5;7 + b ax + cy =0 (1.30)

We have seen above that the solution of this differential equation is
equivalent to solving the characteristic equation

ap2 + bp + c = 0 (1.31)

1.13




The general solution of 1.30 is of the form
e (1.32)

where c; and cp are arbitrary constants, and pj; and pp are solutions of

the characteristic equation 1.31. Recall from algebra that a characteris-
tic equation can yield complex roots, imaginary roots, or real roots,

that is, Py 2 = (-b + b2 - 4 ac}/2a). We will consider the solution
, = V

1.32 for various values of the constants in equation 1,31 and consider
changes in the form of the solution which may be desirable or necessary.

®1.3.1.1 CASE 1: ROOTS REAL AND UNEQUAL

If p; and py are real and unequal the desired form of solution is
just as is

EXAMPLE
2
d%y dy
—5 4 - 12y = 0
dx dx
(P2 + 4p - 12)y = 0 (in operator form)
solving
2
p° + 4p - 12 =0
gives
-4 + /16 + 48
P = 3
-4 + 8
- 7
or
p= -6, 2
and
= -6x 2x
Y c e + cye

is the required solution,

1.14



@®1.3.1.2 CASE 2: ROOTS REAL AND EQUAL

If Py and p, are real and equal we run into trouble.

EXAMPLE
2
dy _ dy -
d;z 4 Ix + 4y 0

(% - 4p + 4)y = 0
solving,

4 + vI6 = 16 4
p = ) =2.=

or p = 2,

all we get is y = cle2x

transient solution like 1.30.
that the ogerator expression (p2 - 4p + 4) can be written (p -2) (p - 2),
which is a polynomial expression with a repeated factor,

or (p - 2)¢,
{that is, p = 2;
as the transient solution,.

. 2
— attempt, y = cje x'
trary constant,

2x
Yy = Cc,e +

To solve this problem,

Now write: y =

coefficients of er

constants, and it is easily

by x.

Yy, = Cc,e + C xe2x
t 1 2

But this gives only one value of p.

2 is the solution.)

c e = (cl

2x
cie
together.

(in operator form)

2

If we try to use 1,32

but we need two arbitrary constants to have a

If we are really alert, we may notice

We can then write y = cle2x + cope
This is really no better than our first

since c] and cp can be combined into a single arbi-

2x _ 2x
+ cz)e = c,e

simply multiply one of the arbitrary constants

2x

+ cpxe”". We can no longer "lump" the two

The solution now contains two arbitrary
verified that

is a transient solution of the problem above,

®! 3.1.3 CASE 3: ROOTS PURELY IMAGINARY

EXAMPLE

2
d7y +
dx

y =0

in operator form

(p2 + 1)y = 0

1.15




Solving,

0+ /O -4
p:___.___z_____ = i/:l-

In nost engineering work we refer to v=I as j. (In mathematical texts
it is denoted by i.). Now,

p=1*13
and the solution is written

Y, = clenx + cze‘Jx (1.33)

This is a perfectly good solution from a mathematical standpoint, but
it is unwieldy and unsuggestive to engineers, A mathematician by the
name of Euler worked out this puzzle for us by developing an equation
called Euler's identity.

ed® = cos x + j sin x (1.34)

This equation can be restated in many wayé geometrically and analyti-
cally, and can be verified by adding the series expansion of cos x to
the series expansion of j sin x. Now 1.33 may be expressed

Y, = ¢ (cos x + j sin x) + <, fcos (-x) + 3 sin (-x)]

(c, + c2) cos X + J (cl - cz) sin x (1.35)

1

or

Yy = C5 COs x + ¢, sin x (1.36)

3

Equation 1.36 has another interesting form., ILet

(1.37)

Now consider a right triangle with sides labeled as follows:

1.16




(91
85 C3
[
C4
Figure 1.2
Now,
c
3 = sin §
2 2
3 * cy
c
4 = cos ¢
2 2
3 * Sy
and
2 2 _
c3 + c4 = A

A and ¢ are arbitrary constants, and 1,37 becomes

Yy = A (sin ¢ cos x + cos ¢ sin x)
or
Y, = A sin (x + ¢) (1.38)

To summarize, if the roots of the operator polynomial are purely imagi-
nary, they will be numerically equal but opposite in sign, and the solu-
tion will have the form 1,36 or 1l.38,

®1.3.1.4 CASE 41 ROOTS COMPLEX

EXAMPLE
2
47y dy -
5;7 + 2 Ix + 2y = 0

in operator form,

(p% + 2p + 2)y = 0

111




Solving,

P= ——— = -1 ¢ Y=T
or
p=-1+3, -1-J
and
Yy = cle('_l tx cze(-l -3 x (1.39)

Equation 1.39 may be written

- X ix -3ix
Yo e c,e + c,e

or, using the results 1.36 and 1.38,

Yo = e cy cos x + ¢, sin x (1.40)

or

v, = e ™™ A sin (x + ) (1.41)

Note, also, that 1.38 could be written in the form

Y, = A cos (x + 9), where 6 = ¢ - 90°

PROBLEMS: Set I, No, 3, page 1.76; Set II, a only, page 1.85.

@1.3.2 PARTICUL AR SOLUTION

The particular solution, for our work here, will be obtained by
the method of undetermined coefficients, (There are other methods
which may be used.) This method consists of assuming a solution of the
same general form as the input (forcing function), but with undetermined
coefficients, Substition of this assumed solution into the Jifferential
equatlion then enables us to evaluate these coefficients. The method of
undetermined coefficients applies when the forcing function or input is
a polynomial, terms of the form sin ax, cos ax, eax, or combinations of
sums and products of these, The complete solution of the linear differen-
tial equation with constant coefficients is then given by 1.18 (that is,
the solution to the complementary equation (transient solution), plus
the particular solution).
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A few remarks are appropriate regarding the second order linear
differential equation with constant coefficients. Although the equation
is interesting in its own right, it is of particular value to us because
it is a mathematical model for several problems of physical interest.

2
dy dy = mathematical model
a <45+ b gt oy F(x) (ma )
dx
dzx dx . B
m — + 8 T + Kx = F(t) (describes a mass spring (1.42)
dt damper system)
a? an , 0 . .
L __%.+ R == + = = E(t) (describes a series LRC
dt at c electrical circuit)

Equation 1.42 are all the same mathematically, but are expressed in dif-
ferent notation. Different notations or symbols are employed to emphasize
the physical parameters involved, or to force the solution to appear in a
form that is easy to interpret. In fact, the similarity of these last

two equations may suggest how one might design an electrical circuit to
simulate the operation of a mechanical system,

Consider the eguation

“a?y dy
a g;z + b Ix + §y = f(x) (1.43)

We now must solve for the special solution (particular solution) which
results from a given input, f(x). This particular solution can be found
by using various techniques, but we will consider only one, the method
of undetermined coefficients. This method consists of assuming a solu-
tion form with unspecified constants (undetermined coefficients), and
solving for the values of the constants which will satisfy the given
differential equation. The method is best described by considering
examples.

@1.3.2.1 FORCING FUNCTION - A CONSTANT

2
a7y 4 ¥ 4 3y = 6 (1.49)
ax? ax T Y o

The input is a constant (trivial polynomial), so we assume. a solution
of form y, = K. Obviously, a2K/dx® = 0, and dK/dx = 0.

Substituting,

0 + 4(0) + 3K = 6
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Therefore, vy, = 2 is a particular solution. We note that we can solve
the equation

2

d’y dy =
g;z + 4 Ix + 3y 0

in operator form

(p2 +4p + 3}y =0
or

p = -1, -3

and the transient solution is

The general solution of 1.44 may be written

-X -3x

Yy = c,e + c,e + 2
.l
transient particular
solution {(or steady state)
solution

©1.3.2.2 FORCING FUNCTION = A POLYNOMIAL

EXAMPLE
2
d”y dy - L2
;;7 + 4 >t 3y X~ + 2x (1.45)

Now the form of f(x) for 1.45 is a polynomial of second degree, so we
assume a particular solution for y of second degree (that is, let y_ =

2 P
AX™ + Bx + C) .,

Then
dy
P .
ax = 2AXx + B
and
dzy
.__2£= 2A
d
X
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Substituting into 1.45,
(23) + 4 (2Ax + B) + 3 (Ax® + Bx + C)
or
(3A) x% + (8A + 3B) x + (2A + 4B + 3C)
Eguating like powers of x,
x2: 3a =1
A=1/3

Xt 8A + 3B = 2

_ 8
B=-2/9

X : 2A + 4B + 3C =0
3¢ = 8/9 - 2/3

cC = 2/27

Therefore,

y = 1/3 x> - 2/9 x + 2/27

P
The general solution of 1.45 is given by

y = cle_x + cze—3x + 1/3 x2

since the transient solution is the same as for 1.44.

-2/9 x + 2/27

As a general rule,

if the forcing function is a polynomial of degree n, assume a polynomial

solution of degree n.

@1.3.2.3 FORCING FUNCTION = AN EXPONENTIAL

EXAMPLE
a’y + 4 9 4 3y = e2X
dxz dx

The forcing function is e2x so we assume a solution of the form

y = Ae2x

(1.46)

l1.21




2

d 2x

— (Ae™7) = 4Ae
dx

2x

Substituting in 1.46,

2x 2x

4e?* + 4 (28e%%) + 3(Re’¥) = e

e2x 2x

(4A + 8A + 3A) = e

The coefficients on both sides of the equation must be the same. There-
fore, 4A + 82 + 3A =1, or 15A =1, and A = 1/15. The particular solu-

tion of 1.46 then is ¥p = 1/15 er' The transient solution is still the

same as for 1,44, A final example will illustrate a pitfall sometimes
encountered using this method.

@1.3.2.4 FORCING FUNCTION = AN EXPONENTIAL (SPECIAL CASE)

EXAMPLE
2
d7y dy - -—X

. . . - . -X
The forcing function is e x’ soO we assume a solution of the formy = Ae 7,

Then
d X, _ -x
(E (Ae ) - -Ae
and
2
9—2- (Ae-x) = Ae_x
dx
Substituting
Ae ™ 4 4(-2e”X) + 3(2e7F) = 7X
(A - 42 + 3B)e X = ¥

(0)e ™ = 7%
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Obviously, this is an incorrect statement, To find where we made our
mistake, let's review our procedures.

To solve an eguation of the form

(p + a (p + by = e 3%

we solve the homogeneous equation to get

(p + a) (p+ by =20

p = -a, -b
_ -ax ~bx
Y, = ce + c,e
If we assume ¥p = P
then
y=y, +y_ =c.e 34 e PX 4 Ae = (c. + BA)e & 4+ ¢ e ~PX
t P 1 2 1 2
_ -ax -bx
= ce + che

However, we have already seen that yy is the solution only when the
right side of the equation is zero, and will not solve the equation
when we have a forcing function. Therefore, we assume a particular
solution.

-ax
= Axe

YP
then

_ _ -ax -bx -ax _ -ax -bx

y = yp +y, = cqe + cye + Axe (c1 + Ax)e + c,e # Yy

Similarly, we could have the equation

(p + aj) (p - aj) y = sin ax
with transient solution

Yy = ¢ sin ax + ¢, cos ax
If we assume yp = A sin ax + B cos ax
then

= = i + B
y Yy ¥ yp (cl + A) sin ax + (c2 ) cos ax

1.23




+ (c2 + B) cos ax

= sin ax + ¢, cos ax =
C3 4 Y

Therefore, we assume

yp = Ax sin ax + Bx cos ax

and

y = (cl + Ax) sin ax + (c2 + Bx) cos ax # Y

Note the following, however, with the equation

(p + a - jb) (p + a + jb)y = sin bx

_ _=-ax .
Y, = e (cl sin bx + ¢, cos bx)

we can assume yp = B sin bx + C cos bx

then

-ax _. -ax .
y = ¢e sin bx + c,e cos bx + B sin bx + C cos bx

y = (c e-ax ax

1 + B) sin bx + (cze

+ C) cos bx # Ye

Similarly, if

(p+a-=-13b) (p + a + jby = e 3%

we could assume
-ax
= Ae
Yp
In our example above, equation 1.47, a valid solution

by assuming Yp = Axe *, then

gi (Axe™™) = A(-xe™X + 7%
and

d2 -X -X -X

I= (Axe ) = A(xe - 2e 7)

1.24
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Substituting

Alxe ™™ - 2e7%) + 4a(-xe X + e™*) + 3(Axe™X) -x

(A - 4A + 3A)xe X + (=22 + 4A)e X = 7%

(0)xe X + 28 X = 7%
and
A= 1/2
Thus,
= (1/2)xe” %
Yo (1/2) x

is a particular solution of 1.47, and the general solution is given by:

-X -3x

y = cje + c,e + 1/2 xe™ %

The key to successful application of the method of undetermined coeffi-
cients is to assume. the proper form for a trial particular solution.
Table 1 summarizes the results of this discussion,

PROBLEMS: Set II, 1-5, b only, page 1.85.
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Table 1

. 2
Differential equation: a d7y +b dy +cy = £(x)
2 dx
dx
f(x)* Assume yp**
1. 8 A
Bxn n n-1
2. (n a positive integer) on + Alx + .. . An_lx + An
Serx
3. (r either real or complex) Aerx
4, B cos kx
A cos kx + B sin kx
5. B8 sin kx
n rx
6. 8x"e™™ cos kx (AOX + ...+ An—lx + An)e cos kx +
n rx
+ Bx +...+B .x+B) e  sin kx
7. ex"e™ sin kx o n-1 n

*When f(x) consists of a sum of several terms, the appropriate
choice for y_, is the sum of Yp expressions corresponding to
these terms individually,.

**Whenever a term in any of the yp's listed in this column dupli-
cates a term already in the complementary function, all terms
in that yp must be multiplied by the lowest positive integral
power of x sufficient to eliminate the duplication,

@1.3.3 SOLVING FOR CONSTANTS OF INTEGRATION

As discussed paragraph 1.2, the number of arbitrary constants in
the solution of our linear differential equation is equal to the order
of the equation. These constants of integration may be determined by
initial or boundary conditions. That is, we must know the physical
state (position, velocity, etc.) of the system at some time in order to
evaluate these constants., Many times these conditions are given at
t = 0 (initial conditions), which is frequently called a quiescent system,

1t should be emphasized at this point, that the arbitrary constants

of the solution are evaluated from the complete solution (transient plus
steady state) of the equation.
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We shall illustrate this method with an example.
EXAMPLE
X + 4x + 13x = 3 (1.48)

where the dot notation indicates derivatives with respect to time (that

is, x = dx/dt, X = dzx/dtz. We will assume that the boundary conditions

are x(0) = 5, and x(0) =8, The transient solution is given by

p2 + 4p + 13 =0

X, = e 2t (A cos 3t + B sin 3t)
We assume
X =D
P
. dxp
L X = E_t = 0
s -0
p

Substituting into 1,48, we get D = 3/13

for a complete solution

-2t
e

x(t) = (A cos 3t + B sin 3t) + 3/13

To solve for A and B, we will use the initial conditions specified above,
x{(0) =5 = A+ 3/13

or
A =62/13

Differentiating the complete solution, we get

=2t -2t

x(t) = e (3B cos 3t - 3A sin 3t) =2e (A cos 3t + B sin 3t)

Substituting the second initial condition

x{0) = 8 = 3B - 2A
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Therefore, the complete solution to 1.48 with the given initial conditions
is

x(t) = e2Y [(62/13) cos 3t + (76/13) sin 3t] + 3/13

We have discussed the first and second order differential equation
in some detail, It is of great importance to note that many higher order
systems quite naturally decompose into first and second order systems,
For example, the study of a third order equation (or system) may be con-
ducted by examining a first and a second order system, a fourth order
system analyzed by examining two second order systems, etc. All these
cases are handled by solving the characteristic equation to get a tran-
sient solution and then obtaining the particular solution by any con-
venient method.

PROBLEMS: Set II, Nos. 1-5, ¢ only, page 1.85.

@1.3 APPLICATIONS

Up to this point, we have considered differential equations in
general and linear differential equations with constant coefficients
in greater detail. We have developed methods for solving first and
second order equations of the following type:

a %’E‘_ + bx = £(t) | (1.49)
a2 a

a _;’,_i +b X 4 cx = £(t) (1.50)
" It

These two equations are mathematical models or forms, These same forms
may be used to describe diverse physical systems. In this section we
shall concentrate on the transient response of the systems under investi-
gation, since this area is of primary interest in future studies.

@1.4.1 FIRST ORDER EQUATION

Consider the following example:

EXAMPLE

4x + x = 3 (1.51)
where

- _ dx

= 3t

Physically, we can let X represent distance or displacement, and t
represent time. To solve this equation, we find the transient solution
by using the homogenecus equation

1.28



4p + 1 =0

p = -1/4
Thus

X, = ce_t/4

X = A

P

dx

P -og

dt
Substituting

A= 3
or

X = 3

p

X = ce + 3 (1.52)

The first term on the right of 1.52 represents the transient response

of the physical system described by equation 1.51, and the second term
represents the steady state response if the transient decays. A term
useful in describing the physical effect of a negative exponential term
is time constant which is denoted by 1. We shall define t as

>

-1
P
Thus, equation 1.52 could be rewritten as

X = ce + 3 (1.53)

Note the following points:

1. We only discuss time constants if p is negative, If p is positive,
the expcnent of e is positive, and the transient solution will not
decay.
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2. If p is negative, 1 is positive,

3. - is the negative reciprocal of p, so that small numerical values
of p give large numerical values of 1 (and vice versa).

4. The value of - is the time, in seconds, required for the displace-
ment to decay to l/e of its original displacement from equilibrium
or steady value. To get a better understanding of this statement,
let's look at 1.53.

x=ce ¥ 4 3

and let t = t, Then

Thus, when t = 1, the exponential portion of the solution has decayed to
1/e of its original displacement (figure 1.3).

Figure 1.3

Other measures of time are sometimes used to describe the decay of the
exponential of a solution. If we let Tj denote the time it takes fcr
the transient to decay to one-half it's original amplitude, then

T, = 0.693 1 (1.54)
This relationship can be easily shown by investigating

x = c.e 3% 4+ ¢ (1.55)
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From our definition, 1 = 1l/a. We are looking for T, the value of t at
which Xy = 1/2 xt(O). Solving .

_ -at

x, = c,e
_ _ -aT
1/2 xt(O) = 1/2 c, = c,e 1
e @1 =12
1In 1/2 = aTl
e o= zin 1/2 _ 693 _ ool
1 a a

Let's completé our solution of 1.51 by specifying a boundary condi-
tion and evaluating the arbitrary constant. Let x = 0 at t = 0,

-t/4

X = ce + 3
x(0) =0 =c¢c + 3
c = -3

Our complete solution for this boundary condition is
x = -3e"%/% 4 3

See figure 1.4,

N b e e - — — —

— Figure 1.4
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@1.4.2 SECOND ORDER EQUATION

Consider an equation of the form 1.50. The characteristic equation
(operator equation) can be written:

apl+bp+c=0 (1.56)

The roots of this guadratic equation determine the form of the transient
solution as we have seen in paragraph 1.3, We will now discuss physical
implications of the algebraic property of the roots,

® 1421 ROOTS REAL AND UNEQUAL
When the roots are real and unequal, the transient solution has

the form
= Pt P,t
X c e 1° + c e 2 (1L.57)
14211 Case 1

When pj and pp are both negative, the system decays and there will
be a time constant associated with each exponential (figure 1.5).

Figure 1.5

1.421.2 Case 2

when pj or p, (or both) is positive, the system will generally
diverge (figures 1.6 and 1.7).

1.32



p‘i Pyt

Pl <o
Py >o

Figure 1.6

1.4.213 Case 3

kEramples where pj or pp (or both)

in practical cases.

©® 1.1.22 ROOTS REAL AND EQUAL

Figure 1.7

are zero, are usually not observed

When p] = p2, the transient solution has the form

pt pt

= +
b4 cle c2te

1.4.2.2.1 Case !

{1.58)

When p is negative, the system will usually decay (figure 1.8).

Iy

pt pt
- %= c]e #czfe

Figure 1.8

p is very small, the system may initially exhibit divergence.)
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14777 Case 2
When p is positive, the system will diverge.
® 1423 ROOTS PURELY IMAGINERY

when p = + jk, the transient solution has the form

X, = ¢y sin kt + c, cos kt (1.59%)
.

X, = A sin (kt + ¢) (1.60)
or

x, = A cos {(kt + 9) (1.61)

The sysﬁem executes oscillations of constant amplitude with a frequency
k (figure 1,9).,

x, = Asin(kt + ¢)

-A <4

Figure 1.9

® 1124 ROOTS COMPLEX CONJUGATES

when the roots are given by p = k; + jkp, the form of the transient
solution is

k.t .

X, = el (cl cos kzt + c2 sin kzt) (1.62)
DY

x, = A 1% sin (k,yt + 4) (1.63)
[SD %

. = A e®1% cos (k. t + 8) (1.64)

X, X )

The system executes periodic oscillations contained in an envelope

given by x = + A eklt
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14241 Case 1
When k; is negative, the system decays (figure 1.10).
14242 C(Case 2

When k; is positive, the system diverges (figure 1.11).

kyt

\/—AC Py,
Kyt kyt -~

~ ximAe ! sin(kat + @) Ae -

A t 2 ¢ P

~ k]<o ’/
~ A_V\
~
T
/-\ o '

=~ v

- ke
o At Xy = Ae ! sin(k2'0-¢)
- e~
4: k K kyt ~~ e
1 .
s ~Ae -A ~ ~
F// \\\\
- —A
Figure 1.10 Figure 1.11

The discussion of transient solutions above reveals only part of the
picture presented by equation 1.50. We still have the input for forcing
function to consider, that is, f(t). 1In practice, a linear system that
possesses a divergence (without input) may be changed to a damped system
by carefully selecting or controlling the input. Conversely, a nondi-
vergent linear system with weak damping may be made divergent by certain
types of inputs.

@ 1.4.3 SECOND ORDER LINEAR SYSTEMS

Consider the physical model shown in figure 1,12, The system con-
sists of an object suspended by a spring, with a spring constant of k.
The mass may move vertically and is subject to gravity, input, and damp-
ing, with the total viscous damping constant equal to c.

1.36




Ly
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. &
i “ b /62
b /ft t per sec
" Ib ‘
ASS ft sec?
DISPLACEMENT
X
ft
FORCE,Ib
F
Figure 1.12

The equation for this vibrating system is given by
mX + cx + kx = f(t) (1.65)
The characteristic equation is given by
mp2 + cp+k =0 (1.66)

and the roots of this equation are

-C c ,2 k
Pr2"mt V@ &
5% t\[g V%{ﬁ -1 (1.67)

Let us, for simplicity, and for reasons that will be obvious later
define three constants

£ < (1.68)
2/FK

the term ¢ is called the damping ratio, and is a value which indicates
the damping strength in the system,

.

A
= k (1.69)

“n m
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wp is the undamped natural frequency of the system, This is the frequency
at which the system would oscillate if there were no damping present,

A ﬁ, '
WL, T ow 1 - ;2 (1.70)

wg 1s the damped frequency of the system, It is the frequency at which
the system oscillates when a damping ratio of ¢ is present,

Substituting cand wy into 1,67 now gives
= -7 w + ju Vi - 4 (1.71)

With these roots, the transient soluticn becomes

X, = C eplt + czepzt

= e-cwnt [c1 cos w, Vi - czt + <, sin wh Vi - t© ¢l (1.72)

or

t
~ x, = A e %“n® sin tw Vi - (2 + ¢

£ (1.73)

Note that the solution will lie within an exponentially decreasing en-
velope which has a time constant of 1/(¢ wp). This damped oscillation
is shown in figure 1.13.

Ae -fwn!
xy= Ae - Lt sin (wnV1= 02t 4+¢)
~ ~
~
S~

-«

Figure 1,13
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If we divide equation 1.65 by m we obtain

x + £ x = £8)

+
X m m

3|10

or, rewriting using wp and ¢ defined by 1.68 and 1,69

; +2 7w X+ wz X = ELEL (1.74)
n n m

Equation 1,74 is a form of 1.65 that is most useful in analyzing the
behavior of any linear system,

A general second order physical system can be compared with mass-
spring~damper system. The equation defining the system was

mXx+cx+k x= f(t) (1.65)

where we defined the parameters

w, T 4/% , undamped natural frequency

fal
1l

, damping ratio

2 vk

From equation 1.7l we see that the numerical value of ¢ is a powerful
factor in determining the type of response exhibited by the system,

PROBLEMS: Set II, 1-5, d only, page 1.86.
Let us now consider the physical problem and analyze the various
conditions possible., The magnitude and sign of ¢, the damping ratio,

determine the response properties of the system.

There are five distinct cases which are given names descriptive of
the response associated with each case.

1. ¢ = 0, undamped

2. 0 < ¢ < 1, underdamped

3. ¢ 1, critically damped
4, ¢ > 1, overdamped
5. ¢ < 0, unstable

We shall now examine each case, making use of equation 1,71

. 2
Py,2 = =% w, e 1 -z (1.71)
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@ 1431 CASE Y: 7 = 0, UNDAMPED

For this condition, the roots of the characteristic egquation are

Py o = % Juy (1.75)
, -
giving a transient solution of the form
= 1 / -
Xe ¢y cos mnt + ¢, sin mnt (1.76)
cr
X, = A sin (wnt + ¢) (1.77)

showing the system to have the transient response of an undamped
sinusoidal oscillation with frequency wsp. (Hence, the designation of
n as the "undamped natural frequency.") Figure 1.9 shows an undamped
system,

Figure 1.14 illustrates typical response for differing values of
damping ratios between zero and one,
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® 1.4.3.2 CASE 22 0< (<1, UNDERDAMPED

For this case, p is given by equation 1,71 and the transient solu-
tion has the form

- . 2
x. = Ae ~°“n% sin (mn 1 -1z £t + ¢) (1.78)

This solution shows that the system oscillates at the damped freguency,
wg, and is bounded by an exponentially decreasing envelope with time
constant 1/(¢ wp). Figure 1.14 shows the effect of increasing the damp-
ing ratio from 0.1 to 1.0,

® 1.4.3.3 CASE 3: ¢ =1, CRITICALLY DAMPED
For this condition, the roots of the characteristic equation are
= - 1.79
p1,2 “n ( )
which gives a transient solution of the form
x, = c,e ®n® + c te7unt (1.80)
t 1 2 .

This is cailed the critically damped case and generally will not over-
shoot, It should be noted, however, that large initial values of x can
cause one overshoot. Figure 1.14 above shows a response when ¢ = 1,

®143.4 CASE 4 7 >1, OVERDAMPED

In this case, the characteristic roots are

Py 5 = - tu tu ,ftf -1 (1.81)
! .

which shows that both roots are real and negative. This tells us that

the system will have a transient which has an exponential decay without
sinusoidal motion., The transient response is given by

- [c N 1)}1: - [c + ﬂ/(cz - l)}t
x, = c,e “n + c,e n

£t 2 (1.82)
This response can also be written as
_ -t/1 -t/
X, = c,e 1+ cye 2 (1.83)

where N and 1, are time constants for each exponential term.
This solution is the sum of two decreasing exponentials, one with

time constant ] and the other with time constant 3. The smaller the
value of 1, the quicker the transient decays. Usually the larger the
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value of ¢, the larger t; is compared to t3. For the case g > 1, 13 is
small in comparison to 1] and can be neglected. The system then behaves
like a first order system (that is, the effect of mass can be neglacted).
This can be seen most readily from equation 1.83, Figure 1.5 shows an
Ooverdamped system.

@ 1.4.3.5 CASE 5 =1¢< ;< 0, UNSTABLE

For this case, the roots of the characteristic eguation are

= - s w 4 Ju_ af1 - 2 (1.84)

These roots are the same as for the underdamped case, except that the
exponential term in the transient solution shows an exponential increase

with time,

_ -cw_t _ 2 . _ 2
X, = e n [cl cos WL 2/ 1 ot o+ <, sin @ 1 ;- t} (1.85)

Whenever a term appearing in the transient solution grows with time
(and especially an exponential growth), the system is generally unstable,
This means that whenever the system is disturbed from equilibrium, the
disturbance will increase with time, Figure 1.1l shows an unstable system,

@ 1.43.6 CASE 6: - - =1, UNSTABLE

For this case, the roots of the characteristic equation are

and

(Wnt)

X, = e (cl + <y t)

@ 1.4.37 CASE 7 "¢ =1, UNSTABLE

This case i1s similar to case 4, except that the system diverges,.
See figure 1.7.

EXAMPLE
Given
X + 4x =0
from equation 1.74

¢ =0
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The system is undamped with a solution
X, = A sin (2t + 9)

where A and ¢ are determined by substituting the boundary conditions
into the complete solution.

EXAMPLE

Given

= 1 -:°=0.87

The system is underdamped with a solution

X, = Ae_o'St

N sin (0.87t + ¢)

EXAMPLE
Given
+ =
a— X + X 0
We multiply 4 to get the equation in the form of equation 1.74,.

Then

X + 4% + 4x = 0
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The system is critically damped and has a solution given by

-2t
t 1 + czte

EXAMPLE
Given

X + 8% + 4x = 0

we get
wo = 2
and
ro= 2

The system is overdamped and has a solution

« = ce-T.46t  -0.54t

t 1l 2

EXAMPLFE
Given

X -2x + 4x =0

From equation 1.74

w = 2
n

and

= =0.5

= w l—C = 1,7

"he solution is unstable

X, = Aet sin (1.7 t + ¢)

@ 1438 DAMPING (See figure 1.,14)

(negative damping) and has the form

The best damping ratio for a system is determined by the intendec

use of the system,
ber of overshoots is inconsequential,

¢, If it is essential that the system not overshoot,

If a fast response is desired,

and the size and nuni-
then we would use a small value o°
and we are not too

concerned about response time, we could attempt to use a critically
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damped (or even an overdamped) system, The value g = 0.7 is often re- —
ferred to as the optimum damping ratic since it gives a small overshoot

and a relative quick response. It should be noted that "optimum damping

ratio" will change as the requirements of the physical system change.

PROBLEMS: Set II, e only, page 1.86-

® 1.44 ANALOGOUS SECOND ORDER LINEAR SYSTEMS
@ 1.441 MECHANICAL SYSTEM

The second order equation we have been working with represents the
mass-spring-damper system of figure 1.12 and has a differential equation
given by

mx+cx+kx= £(t) (1.86)
where

m = mass

c = damping coefficient

=
]

spring constant

and we defined

_ k 5 :
wo = = (1.87)
¢ = c (1.88) -
2Vmk
and thus
25w 0= <
n m
Equation 1.86 may then be rewritten,
%+ S ox o+ k x = £, (&) (1.89)
m m 1 *
where
_ f£(x)
fl(t) T m
or _
¥4 20w x4+ o % x= £ (8) (1.90
" n n 1 :
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® 1.4.4.2 ELECTRICAL SYSTEM

The seccnd order equation can also be applied to the series LRC
circuit shown in figure 1,15.

+ R + L - 4.
LY Y [ N S

Yo

Figure 1.15

where
L = inductance
B R = resistance
C = ca?acitance
q = charge
i = current

Assume q(Jd) = ¢(0) = 0, then Kirchhoff's voltage law gives
P Vapg = O
or
E(t) -VR-VL-VC=0
. t
L o _ di _ 1 . =
E(t) 1R L Ic c . idt 0
Since
- 49
T ae
E(t) = Lg + R§ + f:i ' (1.91)
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we now define

i = -1-
.n LE
;o= R
2 JL/C
_ R
wan = T

2
n

q + 2-;.,n<i + o E(t) (1.22)

® 1443 SERVOMECHANISMS

For control systems work, the second order equation 1is

In 4+ £ 5 4+ 43 = 4o, (1.93)
o) o) o i
where
I = inertia
f = friction
. = gain
Il = 1 1
e input
5 = 0
o utput

Rearranging 1.93 we have

- £ -
o + = ¢
I +

or
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Thus, we see that we can generally write any second order differer
equation in the form

. . 2 _ ]
x+2;wnx+wnx—f(t) (2

where each term has the same qualitative significance, but differs
pnysical significance,

|15 LAPLACE TRANSFORMS

We have developed a technique for solving linear differential
equations with constant coefficients, with ang without inputs or f
functions, We have admitted that our method has limitations. 1t

Further, the solution pProcedure requires that the student stay con.
alert for special cases that require careful handling. We acceptea:
"bookkeeping" chores because our solution Procedures had the remar:
property of changing or "transforming" 2 problem of integration int
problem in algebra. (That is, solving a quadratic equation in the

of second order differential equations.) This was accomplished by

an assumption involving the number e, as follows:

Given

ak + bx + cx = 0 (1.
Assume

x = eMt ' . (1.
Substituting

am?e™t 4 bre™ 4+ ceMt _ 0 (1.
and

emt (am2 + bm+ ¢c) =0 (1.

led us to assert that 1.98 would produce a solution if m were a roc
the characteristic equation

am2 + bm+ ¢ = ¢ (1.

We then introduced an operator, p = d/dt, and noted a short cut (bcce
keeping coincidence) to writing the characteristic equation 1,101 as

ap? + bp + ¢ = g (1.1
which we then solvedq for p to give solution of the form
X = ¢ eplt + ¢ ep2t (1.2

Of course, the great shortcoming of this method was that it did not
vide a solution to an equation of the form




aX + bx + cx = f(t) (1.104)

It only worked for the homogeneous equation. Still, we were able to
patch together a solution by obtaining a particular solution (using

still another technique) and adding it to the "transient" solution cf

the homogeneous equation. It should be appreciated that the method of
undetermined coefficients also provided a soclution by algebraic manipula-
tion.

Suppose we were adventurous enough to inquire further., We ask,
"Does there exist a technigue which_EgE%g_Ezggggggﬂigggggggggl_:he
whole differential equation, including the input, into an algebra
problem?™ The answer is a gualified " " Fortunately, the "Yes"
answer applies to the types of equationswith which we have been working,

In equation 1.104, x is a function of t. To emphasize this, we
rewrite 1,104 as:

aX(t) + bx(t) + cx(t) = £(t) (1.105)
Suppose we multiply each term of 1,105 by emt, giving us:

ak(£)e™ + bx(£)e™ + cx(t)e™ = f£(r)e™* (1.106)

Now, a most remarkable feature begins to emerge. It se happens that
1.106 can be integrated term by term on both sides of the equation to
produce an algebraic expression in m. The algebraic expression can then
be manipulated to obtain eventually the solution of 1,106.

The preceding statements have omitted many details, but express the
method of solution we now seek to develop. Our new "fudge factor", eft,
should be distinguished from the previous technigque for solving the homo-
geneous equation, so we shall replace the m by the term, -s. The reason
for the minus sign will become apparent later. If we are to integrate
the terms of 1.106, we shall need limits of integration. In most physi-
cal problems we are interested in events that take place subsequent to
a given starting time which we shall call t = 0, Since we are unsure
of the duration of significant events, we shall sum up the composite of
effects from time t = 0 to time t = «» (that should cover the field)., So
now equation 1,106 becomes

St st st

j ax(t) e °" dt + b x(t) e ~°" 4t + c x(t) e~
n

=/' f(t) e St at (1.107)
0

Egquation 1.107 is called the Laplace transform of equation 1.105.

dt

There is one small problem, How do we integrate these terms? We
now focus our attention upon this problem.
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® 1.5.1 FINDING THE LAPLACE TRANSFORM OF A DIFFERENTIAL EQUATION

We now attempt to find the integrals of the terms of the differential
equation 1.107. The big unanswered question posed by equation 1.107 is
"What is x(t)?" (that is, x(t) is an unknown). Thus,

f x(t) e % gt = L{x(t} = X(s) {(1.1908)
0

X(s) must, for the present, remain an unknown. (Remember that m was
carried along as an unknown until the characteristic equation evolved,
at which time we solved for m explicitly.) Since 1.108 transforms x(t)
into a function of the variable, s, we shall say

—

@®

[ c x(t) e %% gt = ¢ x(t) e 3% at = cx(s) (1.109)

Jo 0

and be content to carry along X(s) until such time that we can solve
for it.

Now consider the second term, b x(t). We want to find:

- x

- b x(t) e St gt = b x(t) e~St

8 0

dt (1.110)

To solve 1.110 we call upen a useful tool known as integration by
parts. h

f
Recall

b
/’ udv = uv b
/ a
7 a

Applying this tool to equation 1.110 we let

(1.111)

then ;
du = —se-st dg'
and
’i>v = x(t)
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1
8

Putting these values into 1.111 and integrating from t = 0 to t '

® ® hed -st
j'o x(t)e™t at = x(0)e™| _‘ﬂ X(t)[—se ]dt
X(t)e-St]o + S/; x(t)e_St dt

x(t)e‘St]o + sX(s) (1.112)

]

Now

t

x(t)e'St]o = 1lim x(t)e % - x(0) (1.113)

t @+ =

and we shall assume that the term e-St "dominates" the term x(t) as
t»x;. '
Thus, lim x(t)e™S%® = 0, and equation 1.111 becomes

J/; i(t)e-Stdt = 0 - x{0) + sX(s) = sX(s) - x(0) (1.114)

Fquations 1.109 and 1.114 can be abbreviated by using the letter L to
signify Laplace transformations,

L{ x(t) } = X(s)

i L{ ex(t) } = cX(s) (1.115)
L{ x(t) } = sX(s) = x(0)
L{ bx(t) } = blsX(s) =~ x (0)] (1.116)
Equation 1.116 can be extended to higher order derivatives. Such an

extension gives

i Liak(t)} = a [s°X(s) - sx(0) - i(O)]\ (1.117)

Returning to equation 1.107, we note that we have found the Laplace
transforms of all the terms except the forcing function. To solve this

transform, the forcing function must be specified. We shall consider a
few typical functions and illustrate, by example, the technique for find-

ing the Laplace transform.
EXAMPLE

f(t) = A = constant

-st

nd
>
]l
o\\
9
P
1]
]
/3]
@
[o N
t
i
||w
n
o
&
1]
i
w
@
]
1]
[oH
o
1
11
0|
[1]
o 8
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Ny

or

Lar = 2 (1.118)
Sl
f(t) = t
Then
Lit} i/; te Stat
170 integrate by parts, we let
u==t
av = e S%at
Then
du = dt
VvV = = }. e-St
s
Substituting into 1.11%
te Stqe = __-ge + é— e Stat
0 b} 0
_ 1 -st | _ 1
=0 -—e =0+ =
s s
0
or
Lith = 1 (1.119)
Y _'2' -
s
EXAMPLE
f{t) = 2t
Then
c2¢ Y 2t ~st., | T (2-s)t,. _ 1
or
2t 1
L{ie“") = = (1.120)
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EXAMPLE

f(t) = sin at

i/; sin at e~ %a¢

Integrate by parts, letting

Then

L{sin at}

u = sin at
dv = e-Stdt
Then
du = a cos at dt
v = - é e~St

Substituting into 1,111

- . -st oo - -3
0 sin t e~St - z(sin at) (e ) + = cos at e~ Stat
s s
0 0
or ‘
sin at e S%qt =0 + 2 cos at e Stat
0 s /o
The expression cos at e-Stdt can also be integrated by parts
u = cos at
dv = e Sta¢
and
du = -a sin at dt
_ 1 -st
v= e
s
Giving
-st’]w =)
cos at e Stge - zf{cos at) (e ) -2 sin at e~
0 S _Io SJo

1,52

(1.121)

, letting

Stdt



or

L{sin t} (1.122)

i
0|+
i
0|

cos at e dt

o

Substituting 1.122 into 1.121 gives

2
. _ all _a . _a _a .
L{sin at} = 0 + S S L{sin at} ;T ;T L{SLn at}
which "obviously" yields
Lisin at} = —>— (1.123)

s + a

Also note that 1.121 may be written as

L{sin at} g L{cos at}

which yields

; s
Licos at} = -7
s + a

The Laplace transforms of more complicated functions may be quite
tedious to derive, but the procedure is similar to that above. Fortu-
nately, it is not necessary to derive Laplace transforms each time we

e them. Extensive tables of transf i i ced mathe-
matics and control system textbooks,

We originally asserted that the Laplace transform was going £Q
assist in the solution of a differential equation. The technique 1is
fest described Dby an example,

BRI

Given

X + 4% + 4x = 4e2t

with conditions x(0) = 1, x(0) = -4. Taking the Laplace transform of

the equation gives

o2x(s) -sx(0) - %(0) + 4 [sX(s) - x(0)] + 4X(s) = g2

or

2 _ 4
(s + 45 + 4] X(s) + [-s + 4 - 4] = 7
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Solving for X(s),

. 2
X(s) = S — 25 + i (1.124)
(s = 2)(s + 2)

In order to continue with our solution, it is necessary that we dis-
cuss partial fraction expansions.

PRCBLEMS: Set II1, page 1.100.

@1.52 PARTIAL FRACTIONS

The method of partial fractions enables us to separate a complicated
rational fraction into a sum of simpler fractions. Suppose we are given
a fraction of two polynomials in a variable, s, Suppose the fraction is
proper (the degree of the numerator is less than the degree of the domi-
nator). If it is not proper, we make it proper by dividing the fraction
and then consider the remainder expression. There occur several cases:

® 1521 CASE1: DISTINCT LINEAR FACTORS

To each linea such as + b), occurring once in the demoni-
nator,; " thAeTe corresponds a single partial fraction of the form, A/(as + b),

where A 1s a constant to be determined.

g EXAMPLF

! 7s - 4 A B o

L 56 ~N(s+2y sts-T1Ys+= : (1.125)
\\"—'—'——'—.—\

® 1522 CASE2 REPEATED LINEAR FACTORS

Te each linear facter, (as + b), occurring n times in the demoninator
there corresponds a set of n partial fractions.

EXAMPLE
52 9s + 17 A B (o
- _ N + (1.126)
(s -2)%(s+ 1) T =217 732

(where A, B, and C are constants to be determined)

® 1523 CASE 3: DISTINCT éUADRATlC FACTORS

To each irreducible gquadratic factor, as? + bs + c, occurring once
in the denominator, there corresponds a single partial fraction of the
form, (As + B)/(asé + bs + c), where A and B are constants to be deter-
mined.
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EXAMPLE

2
3s®” + 5s + 8 A Bs + C
3 - 5T + (1.127)

(s + 2) (s + 1) 2 g4 41

® 1.5.2.4 CASE 4: REPEATED QUADRATIC FACTORS

To each irreducible quadratic factor, as? + bs + c, occurring n times
in the denominator, there corresponds a set of n partial fractions,

EXAMPLE
2
+
10 s“ + ; + 362 - . f .+ Bs + C 793 + E - (1.128)
(s - 4)(s° + 4) s+ a4 (55 +4)

(where A, B, C, D, and E are constants to be determined)

The "brute-force" technique for finding the constants will be
illustrated by solving 1.128. Start by finding the common denominator
on the right side of 1.128.

10s2+s+36 _A(s®+ 424+ (Bs +C) (s =4)(s>+4) + (Ds +E)(s - 4)

(s - 4)(s2 + 4)° (s - 4) (s + 4)°
- (1.129)

Ther set the numerators equai to each other

102+ s+ 36 =a(s2+ 42+ (Bs+C)(s? +4)(s-4)+ (Ds + E)(s - 4)

(1.130)
and, without justifying the statement, we shall assert that 1.130 must
hold for all values of s, Now substitute enough values of s into 1,130
to find the constants.

1. Suppose s = 4, then 1.130 becomes

(10) (16) + 4 + 36 = 4002

A=1/2
2. Suppose s = 2j, then 1.130 becomes
-40 + 23j + 36 = -4D + 23JE - 8jD - 4E

-4 + 23 = -4(D + E) + 2] (E - 4D

The real and imaginary parts must be equal to their counterparts on the
opposite side of the equal sign, thus
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and -
E - 4D = 1

or
D=0

and
E=1

3. Now let s = 0, then 1.130 becomes
36 = 16A - 16 (C) - 4E
and from above
A=1/2, E=1

hence

4, Let s = 1, then 1,130 becomes

47

25 (1/2) + (B - 2) (-15) - 3

94

25 - 30B + 60 - 6,
or
Th B =21/2

Then 1.129 may be written

2
10 s° + s + 36 1 s + 4 1
=1/2 ( ) - 1/2 ( —) +
(s - 4) (s® + 4)° s -1 2+ 4 (sZ + 42

Let's continue with our attempt to solve the differential equation

%+ 4x + 4ax = 4e?t

We have transforned the equation (and substituted initial conditions) to
get

— (1.124)
(s - 2)(s + 2)
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We now expand by partial fractions

52 - 2s + 4 _ A B C
+

= = + (1.132)
(s - 2)(s +2)¢ S -2 s+2 (o, 52

Taking the common demoninator, and setting numerators egual

s? - 2s + 4 =2a(s +2)%2 +B(s+2)(s -2) +Cfs - 2) (1.133)

We can now substitute different values of s into this equation and solve
for the constants. An alternate method of solving for these constants
exists, however, and we will demonstrate this new approach. If we multi-
ply out the right side of 1.133 we get

52 - 2s + 4 As2 + 4As + 4A + Bs2 - 4B + Cs - 2C

(A + B)S® + (4A + C)s + (4A - 4B - 2C)

Now the coefficients of like powers of s on both sides of the equation
must be equal (that is, the coefficient of s2 on the left side equals
the coefficient of s2 on the right side, etc.) Equating gives

s 1 = A + B
st . 2 =4a+cC
¥ . 4 = 4A - 4B - 2C

Solving, we get

A =1/4
B = 3/4
o= =3

Substituting into 1,132, we get

\ 2
X(s) = 1/4 é—%—z + 3/4 g—%—7}‘3<§—%‘2> (1.134)
/

@ 1.53 HEAVISIDE EXPANSION THEOREMS FOR ANY F (s)

®1531 CASE 1 DISTINCT LINEAR FACTORS

1f the denominator F(s) has a distinct linear factor, (s - a), we
find the constant for that factor by multiplying F(s) by (s - a), and
then evaluate the remainder of F(s) at s = a,
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A
F(s) = g—/5 + ...
A = (s - a) F(s)
S = a
EXAMPLE
_ 78 - 4 _ A B C
F8) = gme—m s ~sts-T*s37

7s - 4 4
A = sF(s) = i o=y u ) M 2
s = 0 —(s - lr( s + 2) s = o -

-

= _ 71s - 4 _ 7 =4
Bols-uEsh o Tsewa|, ., mor -l
js=1 s =1
7s - 4 -14_- 4
C = (s + 2)F(s) = =1y e
s = -2 S8 ° s = =2 TertT

See case 4 also,

® 1.53.2 CASE 22 REPEATED LINEAR FACTORS

If the denominator of F(s) has any repeated linear factors, they
must be treated in a special manner,

A B C 2

F(s) = + + + ... +

(s - a)n (s - a)n -1 (s - a)n - 2 s - a
Let ¢(s) = (s - a)® F(s)
Then
A = ¢(s) )

s = a
B = d¢(s)/d

s =

a
1 4%6(s)/as }
3T

C =
e o L d%0(s)
T kT Tk
ds

*Note: This formula is good for all constants except A above.
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where k =1, 2, ..., n -1
where the derivatives of @ are obtained by using

d (E): vdu -~ udv
v - 2

ds
v
For example,
s2 - 9s + 17 A B c
F(s) = ) = FI 7+ 5=
(s -2)° (s + 1) (s - 2)
A= (s +1) F(s) =5'9S+%7 =L_+__9__+2L7_=§_7_
s = -1 (s - 0% | _ (-3)
B = o(s) _s? - 9s +17 _ 4. -18+17 _
= s+ T = ——F =
s = 2 s = 2
o ds(s) (s +1(2s -9 - (s® -9s+ 11 W)
ds (s + 1)° |
s = 2 . . s = 2
_ (3)(-5) - (4 - 18 +17) _ =18 _ _,
- -8

(3)%

See case 4 also.

@1.5.3.3 CASE 3: DISTINCT QUADRATIC FACTORS

If the denominator of F(s) contains a distinct quadratic factor
(s + a)2 + b2, we will again multiply F(s) by (s + a)2 + b%, and evaluate
the remainder of F(s), ¢(s), at s = -a + jb and use real and imaginary
parts of $¢(s) to obtain the two constants,.

F(s) = As ; B =
(s + a) + b
Let
#(s) = (s + a)? + p? | F(s)
and compute
- ¢r+j¢i=¢(s)s=_a+jb
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Then

A= 4’i B b¢r * a¢£
b b
For example,
2
As + B c
F(s) = 4s +l9s+3§ - 52 +
(s + 2) [(s + 3+ 4] (s + 3)° + 4
4s® + 195 + 32
¢r + e, = $(s) = s+ 2
s = -3 + j2 s = =3 + j2
_ =5 - 310 -1 - 32 _ _ .

T¥ 32 I =-3z° "3taé

o, = -3 ¢, = 4 a=3 b =2
_ 4 _ _ -6 + 12

A= =2 B = 5 = 3

See case 4 also,

©1.53.4 CASE 4 REPEATED QUADRATIC FACTORS (AND ANY OTHER CASE)

Procedures similar to those used in the previous cases exist for
this case, but they are too cumbersome for most applications., The follow-~
ing procedures will work for any combination of linear and quadratic
factors:

2

_  10s” + s + 36 _ A Bs + C Ds + E

Fls) = Z T2 5-7% 2 t 7
(s - 4)(s™ + 4) s + 4 (s + 4)

Put the right-hand side of the equation over a common denominator and
then set the two numerators equal.

2 4 (us 4+C)(s - 4)(s% + 4) + (Ds + E) (s - 4)

lOs2 + 8 + 36 = A(s2 + 4)
(1.135)
which will be a true eguation for all values of s.

®1535 PROCEDURES

The followinc steps may be done in any order, and in corbination

-

with the procedires in cases 1 through 3.
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1. Since equation 1.135 is true for all values of s, choosing specific
values of s, five in this case, and substituting into eguaticn 1,133
will give you five equations in five unknowns, which can re sclved
simultaneously for the constants.

2. Expand the right hand side of equaticn 1.135 and find the cceffi-

cients of each power of s, These coefficients must 52 the sane oa
both sides of the equation (that is, s4: B = 0; s®: 4a - 16C -4E =
36) .

3. Let s equal an imaginary or complex number and substitute into
equation 1,135, The real parts on both sides of the egquation
must be equal, and so must the imaginary parts,

Examining equation 1.135, we will use a combination of procedures, First,
find A by using case 1

A = (5_4) F(S) =10(16) +4+36=§%8-=%:

(16 + 4)°

n
H
&

If we let s = j2, the only non-zero term will be the one with D and E.
Iletting s be a complex number will give us two eguations for D and E,
which we can solve simultaneously.

10(32)2 + 42 + 36 = (j2D + E) (§2 - 4)
-4 + j2 = -4D - 4E -38D + J2E

Now set real and imaginary parts equal,

1
N

-4D -4E = -4 -8D + 2E

-2D -2E = =2 -8D + 2E

]
N
¥

Adding the two equations together gives:
-10D = 0

D=0

Then

To find C, let s = 0 in equation 1,135

-~
o
ll

16A - 16C - 4E = 16(1/2) - 16C - 4(1)

-
e
e}
i
w
!
v
t
"
o
il
t
o
]
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To find B, let s =1

10+ 1 + 36 = 25A + (B +C) (=3)(5) + (D + E) (-3)
47 = 25(1/2) - 15B - 15(-2) - 3
15B = 12 1/2 + 30 = 3 - 47 = 42 1/2 - 50 = =7 1/2
B = -1/2

An alternate way to find B is to calculate the coefficient

of s4 on the

right-hand side of equation 1.135, and then set it equal to the coeffi-
cient of s4 on the left hand side of the equation. Then we get

A+ B=20

B

-A = - 1/2

To complete our solution, we must convert (transform)
time domain. The operatiaon which converts a function X(s)
tion of time is called the inverse Lapla transformatiorms

The inverse Laplace transformation can be solved directly

C + jw
Xx(t) = 5—3- X(s)eStds
C - j=

(where C is a real constant)
This integral, 1.137, is hardly ever used because the Lapla

is unique and, therefore, generally X(s) can be recognized
transform of some known x(t). In practice, tables of trans

back into the
back to a func-

(1.136)

(1.137)

ce transform
as the Laplace
form pairs

(as found in most mathematices texts) will suffice (o find the inverse of

X(s) (see table II, page 1,3%&5 for some transform pairs),

Using a suitable transform table, the inverse of 1.134
be found to cive us a sciution

t -2t 2t

x(t) = 174 et 4+ 3/4 e - 3te”

PROBLEMS: Set IV, A, page viewe&,

1.5.4 PROPERTIES OF LAPLACE TRANSFORMS

The Laplace transform of some f£(t), a function of time
as

@

LUE(t)} = F(s) =, f(t)e ®tac

1.62

can easily

(1.138)

, is defined

(1.139)



where

s = 0 + jw (a complex number)

The strength of the Laplace transform is that it copverts linear
differential equations with constanE4SDeiiician&ﬁ_intg_gigggééigiifgg:
tions in the s-domain. AlLL Ehat remains to do is to take bl
fransform ST THe SXplicit solutions to returp tg the time domain  AL-
though the applications at the school will congider time as tihe inde=-

pendent variable, a linear differential equation with any independent
variable ouch as distance) may be solved by Laplace transforms,

There are several important properties of the Laplace transform
which should be included in this discussion.

In the general case it can be shown that

-1
a® fe)\_ .n n-1 n-2 df(0) @10y |
L {—————)=s F(s) - s £(0) + s St e F T
dt dt
(1.140)

It is obvious that for quiescent systems (that is, initial condi-
tions zero)'

a et

dt

L = s"F(s) (1.141)

This result enables us to write down transfer function by inspec-
tion.

Another significant transform is that of an indefinite integral.

In the general case

L f(eyat™ Y = E4S) o J;(t)dt]t = 0+ , l];(t)dt]t = o+,
. -

n n
S S

Equation 1,140 allows us to transform Integro-differential equations such
as those arising in electrical engineering.

For the case where all integrals of f(t) evaluated at 0+ are zero,
our transform becomes

L {JGO["' f(e)dt” ) = F(:’ (1.143)
S

A third useful property of the Laplace transform arises if we con-
sider the Laplace transform of the product of some exponential and any
other function of time.

.
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L {e'at F(e)y = e 3 f(t)e St gt = F(r)e"(s * At

dt
(1.144)

1t is apparent that this is the same form as the transform of f(t),
except that the transformed independent variable is (s + a) rather than
s. We conclude therefore that

L {e™®% £(t) 1 = LU£(L)} = F(s + a) (1.145)
(s » s + a)

It is important to note at this point, that z

product of two.funciions of time is ngt.egual tgo. the product of the
1ndividual transforws. In sy lic form,

-

L {f(t) g{t)} # F{(s) G(s) (1.146)

m——,

The L{f(t) g(t)} must be solved for directly by the definition of
the Laplace transform,

The last property we will consider is the Laplace transform cof a
pure time delay. A pure time delay of the function f(t) can be repre-
sented mathematically as

f(t - a) u(t - a) (1.147)

A

where a 1is the length of delay and u(t - a}) is the unit step defined as

(1 , (£t -a) 0
uf{t - a) =
i? , (£t -a) - 90

For such a time delay

Lifit = a) 1(t - a)y = e 3% nir(e) (.

[
2

vie sh-it ] now deropstrate the useinlness of +fhe Tavmlace transfesu..ly
solving several example probhlems,

FEXAMPY

“elve the given equation for x(t),

boZ2x o

,-\
s
.

L —
(N
)

wvhen ~(0) - 1,



By Laplace
L{x} = sX (s) - x(0)

Li2x} = 2X(s)

|
\ !
<K CS‘B"X(D)-‘.—Z/( (5)_—_/}

1

L{l} = = |

5 - 7
SX6) £ oA (E) = EH
Thus ( e
1 g /
(s + 2) X(s) ==+ 1 /////i -
s g
~a
_ s + 1 _ A + B

X(s) =gs vy~ 875+ 2
Solving,

A=1/2
and

v B=1-1/2=1/2
_1/2 1/2

X(s) = 5= * gFz
Inverse transforming gives

x(t) = 172 - 172 e 2% (1.150)
EXAMPLE
Given

x + 2x = sin t, x(0) =5 (1.151)

solve for x(t).

Taking the transform of 1.151

sX(s) - x(0) + 2X(s) = ﬁz—L——
S +l

1 5
X(s) = + (1.152)
(s2 + (s +2) °S*°

Expanding the first term on the right side of the equation gives

1 _As +b . _C
(s2 + (s +2) s2+1 S*°

1.85




Taking the common denominator and equating numerators gives
1 = (As +B) (s + 2) + C(s8% + 1)

Substituting values of s leads to

A= -1/5
B= 2/5
c= 1/5

and substituting back into 1.152 gives

1/5 " 5

- -1/5 s 2/5
8 + 2 s + 2

+
s +1 st 4+

+

X(s)

Inverse transforming gives our solution

x(t) = =1/5 cos t + 2/5 sin £t + 5 1/5 e~2% (1.153)
EXAMPLE
Given

X+ 5x+ 6x = 3%, x(0) = %x(0) =1 (1.154)

solve for x(t).

Taking the transform of 1.154

s?X(s) - sx(0) - X(0) + 5sX(s) - 5x(0) + 6X(s) = ——

or

52 + 95 + 21
(s + 3) (s2 + 58 + 6)

X(s) =

Factoring the denominator,

2
s” + 9s + 21 (1.155)

(s + 3) (s + 2)(8 + 3)

X(s)

2
s” + 9; + 21 (1.156)
(s + 3)(s + 2)

1.66



(1.157)

A B C
+ +

s + 3 (s + 3)2 s + 2

Finding the common denominator of 1.157, and setting the resultant

numerator equal to the numerator of 1.156,

52 +9s + 21 = A(s + 3)(s + 2) + B(s + 2) + C(s + 3)2

which can be solved easily for

A= -6
B = -3
c= 7

Now X(s) is given by

-6 3 7
X(s) = - +
s + 3 (s + 3)2 s + 2
which can be transformed to
x(t) = -6e~3t _ 3te™3t 4+ 7e72% (1.158)
EXAMPLE
Given

W + 2x + 10x = 3t + 6/10

x(0) 3

x(0) - 27/10
solve for x(t).

Transforming 1.159 and solving for X(s) gives

_ 353 + 3.352 + 0,65 + 3 A B Cs + D
X(s) = T2 =5t 2tz
s (s° + 2s + 10) s s 4+ 2s + 10
where

A=20

B =20.3

CcC =3

D=3

llﬂ




Thus,

x(s) = 23 4 3s + 3 (1.160)

s + 2s + 10

™

To make our inverse transforming a bit easier, let's rewrite 1,160 as

0.3 (s + 1)
X(s) = + 3 (1.161)
52 (s + 1)% + 3°

which is readily transformable to

t

x(t) = 0.3t + 3e” - cos 3t (1.162)

PRCBLEMS: Set IV, B, page 1,106.
® 1.5.5 TRANSFER FUNCTION
Before beginning simultaneous differential equations, we shall de-
fine the transfer function of a system. Consider the following eguation
with initial conditions as shown.
ax + bx + cx = f(t) (1.163)
x(0) = x(0) =0

1f we paké the Laplace transform of 1.163, we get

as®X(s) + bsx(s) + cX(s) = F(s) (1.164)
or

X(s) _ 1

F(s) as2 + bs + ¢

Since equation 1.163 represents a system whose input is f(t) and whose
output is x(t), we shall define

."\
X(s) =

A
F(s) = input transform

We can then define the transfer—funetion—ofithe susiem - TE —as.

[

. _ X(s)
R O M (1.165)

For our exarple,

D . - (1.167)
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Note that the denominator of the transfer function is algebraically the
same as the characteristic equation of 1.163. We have already seen, in
paragraph 1.6.1 on operator notation, that the characteristic equation
completely defines the transient solution, and that the total solution

is only altered by the effect of the particular solution due to the input
(or forcing function). Thus, from a physical standpcint, the transfer
function completely characterizes a_Jtipedrl _sSystem,

The transfer function has several properties which we wish to ex-
ploit. Suppose that we have two systems characterized by the differen-
tial equations

aX + bx + cx

£(x) (1.168)

..

ay + ey + gy

x(t) (1.169)

From the equations it can be seen that the first system has an input

f(t), and an output x(t). The second system has an input x(t) and an
output y(t). If we take Laplace transforms at 1,168 and 1.169 we get
(assuming all initial conditions are equal to zero)

.

F(s) (1.170)

(as2 + ks + ¢) X(s)

and

(ds2 + es + g) Y(s) X(s) (1.171)

Finding the transfer functions,

_ X(s) _ 1 .
TFl = T © (1.171)‘

= Y(s) _ 1l
2 x(s) ds2 + es + g

TF (1.173)

Now, both of these systems can be represented schematically as shown in
figure 1.16.

F(s) ! TRl f——x(s)

SYSTEM 1}

X($) ] T2 e Y(s)

SYSTEM 2

Figure 1.16

1.69




Suppose that we now wish to find the output, y(t), of system 2 due
to the input, f£(t), of system 1. Our first inspiration might tell us
that the logical thing to do is to fimrd x(t), but this is not necessary.
We can "link" the two systems using the transfer functions, as shown in

figure 1.17,.

F(s) TF] X‘SZ o TFz

e Y ($)

TF3=(TFIXTF2)

Figure 1.17

Y(s)

The solution we seek, y(t), is then given by the inverse transform

of ¥(s), or

Y{(s)

[16,] 7o
[on,] [7,] =0

or

Y(s)

(1.174)

(1.175)

This method of solution can be logically extended to include any

number of systems we desire.

B 1.5 SIMULTANEOUS LINEAR DIFFERENTIAL EQUATIONS

In many physical problems, the mathematical description of the sys-

tem can most conveniently be written as simultaneous differential equa-
tions with constant coefficients. The basic procedure for solving a
system of n ordinary differential equations in n dependent variables
consists in obtaining a set of equations from which all but one of the
dependent variables, say x, can be eliminated. The equation resulting
from the elimination is then solved for the variable x. Each of the
other dependent variables is then obtained in a similar manner,

We shall consider two procedures for solution of simultaneous
linear differential equations, using determinants,

Consider the system

dx dy _ .t
23t dx-y=e

dx

gg t3xry=0

1.10

(1.177)

(1.178)



Using operator notation, they become
t
2(p -2)x+ (p-Lly=e¢e (1.179)

(p+ 3)x+y =20 {1.180)

@ 1.5.1 SOLUTION BY MEANS OF DETERMINANTS AND OPERATOR NOTATION

Recall that for a determinant of second order the value of the
determinant is given by

a b

= ad - cb (1.176)
c d

And then rewrite these equations in the following form

]
Hh

Py X * PyY (8 (1.181)

Py X + pgy = £,(8) (1.182)

where the p's denote the polynomial operators which act on x and y.

Our solution for x can be given by Cramer's rule

P Pyl } £, (e pz’
o= | (1.183)
P,y Pyl l £, (t) P,

|
|
i |

and our solution for y can be expressed as

! (1.184)
| P,y fz(t) i

P Pai
Y

To solve the system given by eguations 1.179 and 1.180, we write
these equation in determinant form

w
L}

!2(9 - 2) (p - 1, } e (p - 1)
| | ox = l (1.185)
(p + 3) 1| | 0 1
which is expanded to
(pz + 1) x = et (1.186)

L1




giving a solution
t

x(t) = c, cos t + c, sin t - 1/2 e (1.187)
Solving for vy,
2(p - 2) (p - 1) 2(p - 2) et
y = (1.188)
{(p + 3) 1 (p + 3) 0
which can be expanded to
(p2 + 1)y = 4de® (1.189)
giving a solution
y(t) = cy cos t + ¢, sin t + 2e° (1.190)

We know by examining 1.187 and 1.190 that extraneous constants are pres-
ent, and to eliminate them we substitute back into equation 1.178 and
see that

(c2 + 3cl + cj) cos t + (3c2 - ¢ + c4) sin t =0 (1.,191)

Since 1.191 must hold for all values of t, the terms in parenthesis must
vanish, giving

)

c —(3cl + C

3 2

and

Cy = cl - 3c2

When these values are substituted in 1.190, we obtain the general solution.

@ 1.6.2 SOLUTION BY MEANS OF LAPLACE TRANSFORMS

A very effective means of handling simultaneous linear differential
equations is to take the Laplace transform of the set of equations and
reduce the problem to a set of algebraic equations which can be solved
explicitly for the dependent variable in s. This method is demonstrated
below,

Given the set of equations

dzx d2y
3 e 3y = f(t) (1.192)
dt dt



dzx d2y

2 — + x + — + 2y = g(t) (1.193)
dt dt .
where x(0) = %(0) = y(0) = y(0) = 0, find x(t) and y(t). Taking the
Laplace transform of this system yields
2 2 _
(3s° + 1) X (s) + (s° + 3) Y (s) = F(s) (1.194)
2 2 _
(28 + 1) X (s) + (s° + 2) ¥ (s) = G(s) {1.195)

From the previous section, we can solve for X(s) by rewriting these
equations in determinant form, again by Cramer's rule

(382 + 1) (s2 + 3) F(s) (s + 3)

X(s) = (1.196)
(282 + 1) 52 + 2) G(s) (s + 2)

Since we are using Laplace transforms instead of operators, however, we
can take this eguation one step further. We can now solve explicitly
for X(s), giving us

F(s) (s 43
G{(s) (s2 + 2)

X(s) = (1.197)
(382 + 1) (s? + 3)
(252 + 1) (s? + 2)

In a similar manner,

(3s2 + 1) F(s)
(282 + 1) G(s)

Y(s) = (1.198)
(3s% + 1) (s® + 3)
(252 + 1) (s + 2)
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For the particular inputs £(t) = t and g(t) = 1,
£Z (s2 + 3)
s |
: (s? + 2’{ 3. .2 5
- - 3 + )
X(s) = . =5 F 5 258 (1.399)
(s - 1) s“ (s’ - 1)
Expanded as a partial {raction
3 2
A B Cs + D E F -s” + s - 3s + 2
X(s) = + = + + + = (1.200)
25 T s -1 T(s+71) s2(s? - 1)
Solving for A, B, etc., we have
_ -2 3 _.1/2 - s 7/4  _ 1/4 ;
X(s) = 5+ g+ = TEF T s -1 (1.200)
s s” + 1
whirch yields a solution
x(£) = -2t + 3 - 7/4e” % - 1/4e® + 1/2 sin t - cos t (1.202)

A similar approach will obtain the solution for y(t).

In the case of three simultaneous differential equations, the appli-
cation of Laplace will yield the proper solutions.

Pl(s) X(s) + PZ(S) Y(s) + P3(s) Z(s) = ?l(s) {1.20%)
Ql(s) X(s) + Qz(s) Y{s) + QB(S) Z2(s) = Fz(s) (1,204)
Rl(s) X(s) + Rz(s) Y(s) + R3(s) Z2(s) = F3(s) (1.205)
whe re
Fy ) P3
2 Q, Q3
F3 ) Ry
X(s) = (1.206)
P P P
1 2 3
9 Q Qy
Ry Ra Ry

Y(s) and Z(s) will have similar forms.
PROBLEMS: Set V, page 1.119.
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Table II

LAPLACE TRANSFORMS

F(s) f(t)
1. ]; e St f(r)dt £(t)
2. s® Fs) - s™L foe) - s™2 gron) | ™) (o)
- , - f(n_l) (O+)
3. 1 1
s
1
4. 3 t
S
n! n
S. ) (n=1, 2, ) t
1 -at
6. s + a €
7. 1 > te—ac
(s + a)
n! _ n -at
8. o )n+l (n =1, 2, ...) t
1 1 -at -bt
9. e+ (e +) a¥b r— (e - )
s 1 -at -bt
10. (s + a)(s + b) a#b a-5 (@ ~be )
. 1 M - )e @ - (a-c)e PP+ (a-ble
: (s + a)(s + b)(s + ¢) (a-b)( - c)(a-c)
12. —— sin at
s2 + a2
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13.

14,

15.

16.

17,

18.

19,

20,

21.

22.

R I
(s2 + az)(s2 + b2)

b

(s + a)" + bz

s + a

(s + a)

Table II (Concluded)

(2 4 v

T e s e e amm ime 4 s wre -

f(e)

cos at

] - cos at

at - sin at

sin at - at cos at

t sin at
sin at + at cos at
t cos at

cos at - cos bt

e-at sin bt

-at
e cos bt



@ 1.7 PROBLEM SET !

1. Solve for vy

dv 4
2. = X + 4x 4+ sin Gx
dx
b a4y = e-x + sin w x
2
dx
c &y oL
dx3
dy 2
- 4 g - }
d dx x ¢

e. (x - l)2 ydx + x2 (y + 1)dy = 0

2. Test for exactness and solve if exact.

a. (y2 - x)dx + (x2 - y)dy = 0

b. (2x3 + 3y)dx + (3x + v - 1)dy = 0

v 2 2

4
c. (2x_v4 e 4+ ny3 + y)dx + (xzy‘e' - xy = 3x)dy

4
d. lMultiply c. by l/y .

3. Solve for Ye using operator notation.

c. y" + 12y' + 36y

d. y" 4+ 25y" = 0

e. y" + 4y' + 13y

0

1.




B 1.8 SOLUTION TO PROBLEM SET |

la. 34 = x4 + 4x + sin 6x
— dx
By direct integration
4 .
-j;y = j}x + 4x + sin 6x)dx + C
- ’_‘i + 2 2 cos 6x + C
7 5 x 6
d2 -
1b. L4 = e * sin w X
— 2
dx

By direct integration .

;
'J;y' = j(e-x + sin w x)dx + Cl

' -X COS W X
= - - =202 4
y € w Cl

2

1.78
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By direct integration

j;y" 'j;S dx + C1

o

6
X
ﬁ—g+ Cl)dx + CZ

7
J;y - JZZE + Clx + Cz)dx + C3

x8 Clx2
y - 336 + 3 + sz + C3

e e e A R A v T e Ee e e M G G S G e e ewe e S wm MM mm R A e e G e e e e Mmoo

1.9




le. (x - 1)2 ydx + x2 (y + 1)dy = 0

Separate Variables

7
2
yrly o L&zl g
y x2

2
f(l + %)dy - _ﬁx_:_'_.z.’_z‘..‘u)dx + C
x

f(l +l)dy - -f(1;2+-1-)d"x + C
y 2

J x

M = (y2 - x) N = x2 -y
al aN
3y 2y P 2x

'
My AN ——>50¢ Exact

3y Yy
3 =
2b. (2x” + 3y)dx + (3x+y -1)dy = 0O
3
M = 2x” + 3y N = Ix+y -1

1.80



M 3N

3y -3 >
aM 3N
3y % Exact

b 3 y
-fa (2x” + 3y)dx +‘fb (3a+y-1)dy = k

4 x 2 y
(1/2x" + 3xy)|, + Gay +1/2y" -y)f, =k

(1/2xl' + 3xy) - (1/2a4 + 3ay) + (3ay + l/2y2 - y) - (3ab + 1/:21.32 -b) =k

1/2x4 + 3xy + 1/2y2 ~-y=k+ l/Zaa + 3ab + 1/2!)2 -b = k

2kt +axy + 1/29% -y = k

3

2c. (nyl'ey + 2xy~ + y)dx + (12y4ey - xzy2 - 3x)dy = O

M = nyéey + 2xy3 + y N = xzy"ey - xzy2 - 3x
%% - 2x(hyde + yPY) + exyt + 1
N 4y - 2 _
% 2xy e 2xy 3
M aN
3y v Not Exact
y -_;x 1 “_2 y -;2 3x T
2d. (2xe? + =+ Zdx + (xe’ -5 - TpPdy = 0

y 3 2 4

y y y
M - (2 y + _23 + .].'_.) N - ( 2 y - 52_ - 2‘.
xe 3 x e 2 4
y y y
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o y . 2 _ 3 ) y . 2x _ 3
Sy 2xe 3 7 = 2xe 5 A
y y Yy y
3N oN
3; " 3= ::;é:;Exact
x 2 1 2 2 3
y o, 2x 1 y . a _ 23 -
(2xe’ + y + 3)dx + b (a"e 7 4)d k
y y y
2y x2 X\ X 2y a a.y
(x“e’ + — + —3) + (a%e’ + — + -79 = k
y v’ a y v° b
y X X 2 a2 a 2 2b 2
(x"e’ + +—§)-(aey+—+———) + (aey+a—+-a—-) - (@%” + & + _a_) *
y 3 3 b 3
y y y b
2 2
xzey + e X2 . ¢ o4 azeb + 24 2 o g
y y3 b b3

i
o

3a. 5y' + 6y

5p + 6 = 0
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P - sz ~ 24p = O

P(P2 -5p-24) = O

p(p-8)@(p+3) =0

P’ + 12p + 36 = 0O

(p + 6)(p + 6) = O

Pp = -6, -6

1.83




3d. yIv + 25y" = 0

pb o+ 252 = 0

p? @2 +25) = 0
p = 0,0,%53

Yo = € + Cx + C,osin (5x + 9)

2 3

or

yt - Cl + sz + C4sin 5% + Cscos 5x

-2x
Y. = Ce sin (3x + @)

or

e-2x (CZ sin 3x + C3 cos 3x)

1.84



@19 PROBLEM SET Il

Given:

1. ‘¥ + 36% = 6 + ¢t

2 ¥ + Sy + 6y = 3e-3t
3. ¥ + 4y + 4y = cost
4, 2X + 4x + 20x = 6t +
5 3x + 2x = -Ae-Zt

Find:

a. The transient solution.

b. The particular solution.

¢. Substitute the following boundary conditions to eliminate arbitrary

constants.

1) For problem

2) For problem

3) For problem

4) For problem

5) For problem

1 above .9.(0) -

2 y() =
3 y@©) =
4 x(0) =
S x(3) =

360 YO -

-6, y(0) = 1

28 . 104
25 YO = -5
-E, x@ - 3
-0.14

3]

y(0) = y(0) = 0
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Find wo, W 7 , t where applicable.

d »

Describe the system damping where applicable (i.e. underdamped, overdamped,
etc.).

SKETCH the total response (i.e. total solution).



B 1,10 SOLUTION TO PROBLEM SET Il

1. 'Y+ 36y = 6 + ¢

P = 0, 0, 163

. - c, + Czt + C4 sin (6t + 9)

or

Yo ~ C1 + C2t + C4sin 6t + Cg cos 6t

b. Assume

y = At + B

Checking the transient solution we see both of these same

terms. We must multiply by the independent variable until

we do not duplicate terms in the transient solution.

3 2
= At + Bt
’p
. 2
y - 3At° + 2Bt
p
¥y = 6At + 2B
Yp
- 6A
p
Sace - 0
e

1.81




1.88

Substituting into the original differential equatienm,

0 + 36(6At + 2B) - 6 + ¢t

216At

+ 72B = 6 + t

Equating like coefficients,

Using (1)

216A

72B

(2)

<}

[ ]
—

= C, + C.t + C_, sin (6t + @) +2—§

1 2 3

= C + Ct + Cysin6t + Cgcos 6t +

1 2

n

t
c2 + 6C3 cos (6t + @) + 73 +

sin (6t + @) + .t +%

-36C 36

3

Y

-216C3 cos (6t + @) + 36

P,
12
2,82
216 12

o 1ad



Substituting boundary conditions.

1 1
y (0) 216C3 cos § + 55 " 3¢
C3 cos § = 0
oe - - -1_ - -]:-
y(0) 36C3 sin p + g z
C3 sin 0 - 0/
C3 sin § = C3 cos #
sin® = cos @
@ = 45°
C3 = 0
02 = 0
C1 = 0
- —i + Ei
y 216 12
Using (2)
t3
y = C1 + Czt + G sin 6t + Cs cos 6t + 716
. tz ¢
y = C2 + 6C4 cos 6t -~ 6C5 sin 6t + 737 + 3y
(X ] t 1
y - ’36C4 sin 6t = 36Cs cos 6t + 33‘ + g
'y = -216C4 cos 6t + 21605 sin 6t + =%

1.8
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2. ; + 59 + 6y = 3e

a) pz + 50 + 6 = 0

(p +3)(p +2) = 0

P - -3, =2

b) Assume yp = Ae-3t (forcing function and all its derivatives)
Cross check with Ver Since yP appears in Ve multiply by t in

order to eliminate the duplication.

— . -3t
. oo yp = Ate
yp - —3Ate-3t + Ae-3t
;; = 9Ate-3c - 3Ae.3t - 3Ae_3t
= 9Ate-3t - 6Ae-3t

Substituting into the original D.E.

e 3% [(9At - 6A) + S(A - 3At) + 6At] = 3e

-3t -3t
e

(=A) - 3e

191




c) y - Cle + Cze - 3te
y = -3Cle-3t - 2C2e-Zt + 9te-3t - 3e-3t
Substituting the boundary conditions
y(0) = 1 = C1 + C2 e 02 - 1 - C1

y(0) = -6 = -3¢, - 2¢, - 3

1 2
-3 = -301 - 2 + 2C1
C1 = 1
C2 = 0

From the homogeneous equation

y + 5y + 6y = 0

w = 6
n

w = /6
n

2cwn ol 5

wy = is undefined

The system is overdamped and non-oscillatory.

1.92
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3. y + 4y + 4y = cos t

a) p~ + 4p + 4 = O

b) y = A, sint + A cos t
Yy - A, cost - A sint

p 1 2

yp - -Al gin t =~ A2 cos t

1.83




Substituting into our original D.E.

(-Al - loAz + loAl) sint + (-A2 + loAl + 4A2) cost = cost

(3Al - 6A2) gint + (4A1 + 3A2) cost = cost

Equating like coefficients

3A1 - 4A2 - 0 1 2
Sube
4 16
Al 3A2 -—3-A2 + 3A2 - 1
Sup
4 3
A 75 A, = 35
. 4 3
.o yP 75 sint + 25 cos t
y - )’c + Yp
-2t -2t 4 3
c) vy = Cle + Czte + z—sain t + Jg cos t
3 28
y(@ = ¢ + 35 = 33
Cl = 1
: _ -2t -2t -2t A 3
y(t) = 2C1e + Cze Zczte + 75 €OS t - 75 sin t
y@©) = -2c, + C, 1 ==
1 2 25
4 104
5t G -5
_ 28
C2 = 25
ey o= o2t jf te-zr' + -2% sin t + -2—2 cos t

1.94



Critically damped.

2x + 4x + 20x

4.

x + 2x + 10x

"Standard Form'

Place in

2x + 10x

x +

a)

+ 2p + 10 0

P

e+ 1% + 9

1.85




b) Assume xp = At + B

Substituting

O + 4A + 20At + 20B = 6c+-g-
200 = 6
s B

W+ 208 = ¢
B = 0

e xp-i%:
X - xt + xp

—c 3
¢) x(t) = e (C1 sin 3t + C2 cos 3t) + ot

x(t) = -et (C1 sin 3t + C, cos 3t) + et (3cl cos 3t

2
- 3C, sin 3t) + —
2 10

x(0) - 3 = C2
y 27 3
x(0) = -7p5 =C, + 3cl + 10

27 . . 3

10 3 + 3C1 + 10

1.96
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5. Given

a) 33 + 2 = 0

p = =2/3
-2t/3
xt Cle
b) Assume
x - Ae.zc
P
x - -28e72t
P
Substituting
-6Ae-2t + 2Ae-2t - -6e_2t
A = 1
-2t
X = e
P
¢) x Cle-Zt/3 + -2t

Substituting the boundary condition

x(3) = -0.14 = C, (0.14)
-.142
G * " - e~

1.98
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_eT2/3 g2t

x(t) =

d) From the transient solution

-2t/3
xt Cle

TR TS s
=5 R =EE e t
pooat j3og asal R RS2 3% siiadSotts sud e futps Fiode

B it e e B BB : 153
s b L . i 2 qEs
g [R2E)

: 3T

feses: I3 ARt 3 I

ait
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W 111 PROBLEM SET Il

Given: C.,x + C,x + C,x =

1 2 3

Find: X(s)
When:

#1 #2 #3 #4 #5
& - ;_‘ - 1 4 2 1
C2 = 1 —---2 3 4 6
C3 = 6 o 5 -1 7 9 -
x(0) = 0 -1 3 -1 2 )
x(0) = 0 9 -2 0 -1
f(t) = sin 6t e % sin 3t t3 - t sin 2t 6e'1"‘ + 6t cos 4t 2—'—%’5—25

1100



W 1.12 SOLUTION TO PROBLEM SET it

In general for a second order D.E.
C,x + C,x + Cox = f(t)

1 2 3

Take the Laplace Transform

c, [s2X(s) - sx(0) - x(0)] + c, [sX(s) - x(0)] + CX(s) = F(s)

(cys? + Cps + CIX(s) = F(s) + C ax(0) + C,x(0) + C,x(0)
F(s) + Clsx(O) + 01;(0) + C2x(0)
X(s) - 7
(Cls + Czs + C3)

This equation can be used for any second order D.E. with constant coefficients.

1. Given
Cl = 3
c, = 1
C3 = 6

f(t) = sin 6t

1.181




From transform pair 12, F(s) - 5
s + 36

X(s) = 2 ; 3
(8° + 36)(38” + 8 + 6)
2. Given:
C1 - 1
C2 = -2
C3 - 5
x(0) - -]
x(0) = 9

f(t) - e-c sin 3t

From transform pair 21,

F(S) - ...____3.2_—— = —2_.__3—._
(s+ 1) +9 s* + 28 + 10
(}17——3—————i> - s + 11

X(s) = st + 2; + 10

8 - 28 + 5

Obviously, this can be reduced to a simpler form, but that's not necessary

for this exercise.

1.102



3. Given:

C1 = 4
C2 - 3
C3 - -1
x(0) = 3
x(0) = =2

3
f(¢) = t° - t sin 2t

From transform pairs 5 and 17,
Fa) = % - o
8 (s + 4)
o es® - 4s® '+ 4Bs® + 96
s“(s2 + 4)2

4 5 2
<Gs - Zs 2+ 4852 + 96) + 125 + 1
s (8 + 4)
(s + 3s - 1)

X(s) =

1.103




4. _Given:

c, - 2
c, - 4
c, - 7

x{(0) = -1
;(0) = 0

£(e) = 664 + 6t cos 4t

From transform pairs 6 and 19,

.
O s By
(s” + 16)
Py - 850 % 1926% 4 1536 + 6s® + 208> - 96s - 384
(s + 4) (s + 16)°
6s* + 65> + 2168 - 96 + 1152
F(s) = 422

(s + 4) (s + 16)2

¢

X(s) - Lf(s) -~ (28 + 4)

232 + 48 + 7

1.104



5. Given:

From transform

C1 - 1

C2 - 6

C3 - 9

x(0) - 2

x© = -1 .

£(t) = 3——-——‘:-?& - % - %cos 2t

pairs 3 and 13,

1 1 1 8
rey = L (L) - -< )
2 (s 4 s2 +4
1 232 + 8 -~ 32 1 52 + 8
JONELEE SN b el D I T
s(s” + 4) s(s” + 4)
ey - | B8+ Qs+ 1)

sz + 68 + 9

1.188




W 1.13 PROBLEM SET IV

A. Expand by partial fractions:

1)

2)

3)

4)

+ 298 + 36

+

(s + 2) (8% + 48 + 3)

6 + 5

+

(ﬂz + 38 + 2)(a + 1)

780 + 278 + Sls + 27

3a

(33 + 9s)(s2 + 38 + 3)

3 4 ses? - 178 + 107

(s - 1)(8° + 4)2

B. Solve by lLaplace:

1)

2)

3)

4)

5)

6)

1.106

2x
2x
5x

2x

- 5, y@ = 0

- e, oy = 1

= gint , x(0) = 5

+ 9% = 2sin3t , x(0 = x(0)
-3t

+ 6x = 3% | x(0) = x(0) =

+ 10x - 3t +

wiw

. x(0) - 3

;g(o) - -

Lad L34
O~

1

0



@ L14 SOLUTION TC PROBLEM SET IV

A,
1) 552 + 298 + 36 . Ss2 + 298 + 36
(s + 2)(s® + 45 + 3) EIEDIES!
A B c
s+2 T s+3 t s+l

A(s + 3)(s +1) + B(s +2)(s+1) + C(s+ 2)(s + 3)
(s + 1)(s + 2)(s + 3)

Setting numerators equal:
562 + 298 + 36 = A(s+3)(s+1) + B(s+2)(s+1) + C(s+ 2)(s + 3)

let 8 = -3 : 45 - 87 + 36 - B(-~1) (-2)

2B = -6 CT
B = -3
let s - -1 : 5 - 29 + 36 = c(L) )
2C = 12
C = 6

1101




1.108

let

5+ 298 ¥ 36

(s + 2)(s® + 48 + 3)

— e o — e . — — S A mm ey mm dm dmn e e e e e e G G e - e wm e e wm et A — —

232 + 68 + 5

(s2 + 38 + 2)(s + 1)

20 - 58 + 36 - A1) (-1)
A = 2
- 2 + (=3) 6
s + 2 s + 3 s +1
2s + 68 + 5 232 + 68 + S

c

AGs + D% + B(s+2)(s +1) + C(s +2)

(s + 1)2

(s + 2)(s + 1)2

Setting numerators equal:

let

let

2s + 6s + 5 -

(s + 2)(s + 1)°

A +1)% + B(s+2)(s+1) + C(s +2)

= 1
12 + 5 =
= 1



let s = 0 : 5 = A + B(2) + C(2)

5 - 1 + 2B + 2

232 + 6s + 5 1 1 1

(s + 2)(s + 1)°

26" + 763 + 2762 + 51s + 27 _  2s% 4+ 78> + 275 + 5ls + 27

(53 + 95)(82 + 38 + 3) s(s2 + 9)(s2 + 3s + 3)

3)

+B;+C+2Ds_+5
s + 9 s + 3s + 3

® >

Find the common denominator and set numerators equal:
4 3 2 2 2 2
26 + 78 + 27s° + 518 + 27 = A(s” + 9)(s" + 3s + 3) + (Bs + C)(8)(s” + 3s + 3) +

+ (Ds + E)(s)(52 + 9)

let s - 0 : 27 - 27A
A_=_1
let s = 3 : 162 + (-189j) - 243 + 1533 + 27 = (3Bj +C)

+ (33)(-9 + 93 + 3)

~54 - 36] - (54B - 27C) + (-81B - 18C)j

1.109




1.110

Since the real part on the left must equal the real part on the right,

@ -54 = 548 - 2IC

and the imaginary parts must also be equal

@ -36 = -81B - 18C
from @ C - +2 + 2B

substituting into @

-36 = -81B -~ 18(2 + 2B)
0 = -117B
B = 0

let s = ]

2 - 74 =27 + 513 + 27

A(8)(2 + 33) + (B +

(3)(2 + 33) + (40 + E)(§)(8)

2 + 443 = 16 + 243 + 43

-8 + 16 = -8D + (8E)§

Setting real and imaginary parts equal,

-§ = 8D

- 8D + B84E



16 = 8E
E = 2
2:4 + 733 + 27s2 + 51s + 27 R § + 2 + s 4+ 2
8 82 +9 82 + 38 + 3
4 3 2
4) 78 - 38~ + 568" - 1l7s + 107 - A + Bg + C + Ds + E
2 2 (s - 1) 2 2 2
(s - 1)(s" + 4) (8” + &) (8 + 4)

2,4)%2 + (Bs +C)(s - 1)(s> +4) + (Ds +E)(s - 1)

(s - 1)(s> + 4)2

A(s

Setting numerators equal:

76% - 383 + 5682 - 178 + 107 = A(s2 + 4)2 + (Bs + C)(s - 1)(s> + 4) + (Ds + E)(s - 1)

Let 8 = 41 : 7 - 3 + 56 = 17 + 107 - 25A

150 = 25A

Multiply it out

76% - 383 4+ 5682 - 178 + 107 = 6(s® + 8s% +16) + (Bs® - BS® + 4Bs? -

2
- 4Bs - Cs + 4Cs - 4C) + (Ds2 + Es - Ds - E)

1111




1112

Equating like coefficients,

s 7
33 -3
s2 56
sl -17
B.
Doy +y o= s, yo
s+ 1) ¥(s) = 2
t(s) = s(s .i“l) "
v 53 =  A(s +1) + Bs
s = -1 5 =
s = 0 5 -
M - 2 - o3y
y©) = 5 = st

- 6 + B~ :>B = 1
= 0 - B +C=>C = -
= 48 + 4B - C + D —3>D = 2
= 4B + 4C + E -~ DT—2SE - D = -5
=IE__ = _ -3
= 0

A, _B A(s + 1) + Bs

s s+ 1 s(s + 1)

-B

A



2)

NOTE:

+

we have an inverse transform for

y = &3t , y(0) = 1

s¥(s) - y(0) + Y(s) = o3

1 1
¥ = GFDG+DH s + 1

s +1
1 - A + B
(s + 1)(8 + 3) s +1 s +3

1 = A(s + 3) + B(s +1)
8 - —l . 1 = ZA— — ’ A

s = -3 : 1 = -2b—P»B

1 1/2 1/2
Y(s) = s +1 + s+1 s+3
3/2 1/2
Y(s) - s + 1 s + 3
y(¢) = 32 - 172
; + 2x = sin t x(0) = 5

sX(s) - x(0) + 2K(s) = — L

s +1

We will use partial fractions on only part of the expression, since

A(s + 3) + B(s + 1)

(s + 1)(s + 3)

1/2

-1/2

113




X(a)

2

1 + 5 Tranaform available so do not
2 s + 2 include in partial fraction
(8" + 1)(s + 2) expansion.
_ As+B , _C (As + B)(s +2) + C(s> + 1)
s°+1 s +2 (82 + 1)(s + 2)

(8° + 1)(s + 2)

[
|

X(s)

(As + B)(s + 2) + C(s2 + 1)

sC——P»Cc = 1/5

= 2/5

3B + 2 —>>A = -1/5

-2 1 -
0 2B + C —>8B
1 3A +
-;/5 s .4 2/5 + 5 i/g
8" + 1 s +1 8

-1/5cos t + 2/5s8int + 51/5e

L1114

X(8)

6

6

(8% + 9)(s% + 28 + 9)

= x(0) - 0

As + B Cs +D
2 t 3

8 + 9 8° + 28 + 9

(As + B)(s2 + 28 + 9) + (Cs + D)(s% + 9)

6

9B + 9D



s = 33 : 6 = (3A] + B)(-9 + 6] + 9) = (3A] + B)(61)

6 = -18A + 6Bj

A = -1/3
B = 0
D = 2/3
8 = 1 : 6 - 12A + (C + D)10

6 = 12 (-1/3) + 10C + 10 (2/3)

Cc » 1/3
X(s) = -;/3 s 123 8 + 2/3
s + 9 g +28+9
X(s) = -2/3 s ., 1/3 (32+ 2)
. 8° + 9 (s +1)"+38
~-1/3 s 1/3 (s + 1) 1/3
= 2 + 2 + 2
s + 9 (s+1)" +38 (s+1)" +8

x(t) = ~-1/3cos 3t + 1/3 e % cos 2/2t + 1/6v2 & sin 2/2 ¢t .

5 x + 5% + 6x = 3e . x(0) = x(0) = 1

82 X(s) -~ 8x(0) - :.:(0) + 58X(8) - 5x(0) + 6X(s) -

2
8 + 93 + 21
s_'_3-I-s+6 s+ 3

(82 + 58 + 6) X(s)

1115




s _+ 93 + 21 s + 93 + 21 A
X(S) —— e 2.. S ES B - _.-..._.2...-.-.. ;_..’:.3 + _-_..i
(8 + 3)(s° + 55 + 6) (s + 3)"°(s +2) (s + 3)
s2 4 95 4+ 21 = A(e+ (s +2) + Bls42) 4 c(s + 3)2
s - -3 : 9 - 27 + 21 - -B B = -3
s - -2 : 4 - 18 + 21 - C C = 7
s = 0 : 2] = 6A + 2B + 9C A = -6
x(t) = . _-_6_e—.3.t_ - .3_L_e_-_3.t_ + 7e.-_21
o ' 3 27
6) x + 2x + 10x = 3t + =, x(0) = 3 , x(0) = - =
5 10
sPR(s) = sx(0) - x(0) + 2sX(s) = 2x(0) + 10X(s) = —g- + 35
S
(2 + 25 + 10) X(s) = 2 4 1:—5 + sx(0) + 2x(0) + x(0)
S
3 3/5 27
= -3 + 5 + 3s + 6 - 10
s
3 2
- 35 % 33/10s” + 6/10s + 3
2
3:;3 + 33/10 52 + 6/10 s + 3 A B Cs + D
X(s) —_——— e e el 2 T2 m S + =5t ey
S

1.116

2 2

2
sz(sz + 2s + 10) (s™ + 2s + 10)



333 + %% 32 + I% s + 3 = As(32 + 28 + 10) + B(s2 + 28 + 10) + (Cs + D)s2
= 0 : 3 = 108 B = =2
8 10
33 6 3
s = 1 3+t t 3 = AQ3) + 35 (13) + (C + D)

or 13A + C + D - 6

33 6
s + 3 : -3 - 5t el vt3o- Aj(-1 + 23 + 10) +

(-1 +2j +10) + (C3 +D)(-1)

24 6
10 10

and

substituting into

13A + C + D = 6

1111




1.118

134 = 3 + 9A - 2A + 3

A = 0

then
C = 3

and
D = 3

X(s) - 3/;0 + > 3s + 3 - 3/;0 + 3
s s + 28 + 10 s

3 ~-t

x(t) - IE_F + 3e cos 3t

8 + 1

(s +1)% + 3



@ 115 PROBLEM SET V

Solve the following problems using Laplace Transforms.

1. x + 3x -y = 1 x(0) = y(0) = O

2. x - 3x - 6y = e x(0) = y(0) = 0

1.119




® 1.16 SOLUTION TO PROBLEM SET V

Ioox 4 3» y
x(0) = y(0)y = 0
x by 7
. . 1
sX(s) - x(0) 4+ (=) - Y(s) = =
. e , 2
X (‘) - X(O) + [P (‘a) + sY (S) - y(”) = ;
, ]
(s 4 3) X(s) - Y(s) = Z
2
(s 4 8) X(s) + sY(s) = 5
1
s 4 3 -1 i’ -1
‘\(5,) z = 1 + -1 = _S_+_2.
2 s s
+ 8 & = s
s
s + 3 -1 s + 3 4
s 2 1
Y(s) = e 2+ - Yswl =
n $ s
s + 8 s s+ 8 =
s
+ 3 -1
= sz+35+s+8 = 5:) + 4s 4+ 8
+ 8 s
X(S) .- __.-.2.,‘.8.:}. .2...--. = i\ + _.Q.B.s.j. .C_..
s(s“ + 45 + 8) s s+ 4s + 8

1.120



A(s

2

X

+ 48 + 8) + s(Bs + C) = s + 2

= 0: 8A = 2 52: A + B = 0 s: 4A + C = 1
A_=_1/4 B_= - 1/4 c =0
4 -1/4 4
(s + 2)" + 4 | (s +2)" + 4 (s + 2)" + &_
-2t
x(t) = 1/4]1-e (cos 2t - sin 2t)
Y(s) = ; s - 2 - % + zBs +C
s(s” + 4s + 8) s + 4s + 8
A(s2 4+ 4s + 8) + s(Bs+C)y .= s -2
s =0: 8A = -2 32: A+B = 0 st 4A + C = 1
A = _-1/4 B = 1/4 c = 2
Y(S) - 1/4 ;s'.]: + _E—j——g-——— = 1/4 -;;;- + __—S_i..z.-_-_ + ._..é___z
(s +2)"+ 4 (s +2)" + 4 (s +2)" + 4

y(t) = 1/4 [}l + e-Zt(cos 2t + 3 sin 2tﬂ

x - 3x - 6y = e-zt

x(0) = y(0) 0

y + x =3y =1

1121




1
8 + 2

(s -~ 3) X(8) -6Y(3) =

sX(s) + (s - 3) Y(s) =

1
s-3 -6 Xy = |2 *2 '6_3—3+g_sz+3s+12
1 s + 2 8 s(s + 2)
s s -3 Py 8 - 3
1
s -3 -6 Y(s) = s -3 s+2|_ 8-3 _ s N
1 8 8 + 2 s(s + 2)
s s -3 8 Py
s - 3 -6
- 32 -6 + 9 + 68 = 52 + 9
s s -3
x(sj - s + 38 + 12 - A ,_B 4 Cs+D
2 s s + 2 2
s(s + 2)(s° + 9) s“+9

AGs + 2)(s2 +9) + Bs(s2+9) + (Cs +D)(s)(s +42) = s>+ 3s + 12

s = 0: 18A = 12 s = -2: =2B(4+9) = L-6+12
A= 2/3 -268 = 10
B = =5/13
3: A+ B + C =0 8: 9A + 9B +2D0 = 3
c = 5/13 - 2/3 l5—;9-23:2n-3-6+-‘1‘--;i-'3-5—1-'3-—39-- -2
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11 3
C = -3 D =13
2/3  5/13  _ 11/39s 3/13
X(@) = 5~ S+2 2 +*3
s +9 s 4+ 9

x(t) = 2/3 - 5/13e2

¥(s) = -3 -~ 6 -

s(s + 2)(82 + 9)

t _11/39 cos 3t + 1/13 sin 3t

+ + Cs + D

s + 2 s2 +9

A B
-]

Als + 2)(s2 + 9) + Bs(s2 + 9) + (Cs + D)(s)(s + 2) = =8 -6

g =0: 184 = -6 g8 =
_ A = -1/3
s =33: (43¢ +D)(§3) (s + 33)

43(46C + 2D + 33D - 9C) =

-18C - 9D - §27C + j6D =

+18C + 9D = +6

6C + 3D = 2

12C+ 6D = 4
27C - 6D = 3
39¢c = 7

-2: =2B{13) = -4

B = 2/13

=-33-6

-3j3 -6

-6 -33

6D -27C = -3

27C - 6D = 3
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APPENDIX I CHAPTER 1

INTEGRATING FACTOR

Given a linear first order differential equation, i.e.,

A L+ By = )

let us rewrite the equation in the form (a standard form for the equa-
tion:

dy + P(x) y dx = Q(x) dx
Is it possible to find a function v(x) such that

vix) dy + v(x) P(x) y dx = vi(x) Q(x) dx

is an exact equation? If this can be done, we must be able to write
the equation as

M(x, y) dx + N(x, y) dy = 0.

Rewriting the equation involving v(x) in this form, we get

[v(x) P(x) y - v(x) Q(x)} dx + wv(x)dy = 0
M N
Thus, M = {v(x) P(x) y - v(x) Q(x)], and
N = v(x).

For exactness, it is required that

M _ 9N

9y X
Thus,

M _ . 9N _ dv(x)

G RAOTIEE - S~
and

d_Y_(l)_ = V(X) P(x)

dx

I.1




or

dv(x) _
[58 - Jeco o

In (v(x)) = P(x) dx

e/P(x) dx

v(x) =

The function v(x) 1is called the integrating factor for the differen-
tial equation (in standard form). Note that as long as the D.E. is
a linear first order D.E., an integrating factor exists.

INTEGRATING FACTOR - (2nd APPROACH)

For a linear differential equation of first order, i.e.,

dy -

dx P(x) vy Q(x)

there is a special procedure which always works. It is always possible
to find a function v(x) such that the equation can be rewritten in
the form

d vx) y) = v(x) Qx)

dx

which can be solved by direct integration. Let us examine the alternate
form. It can be rewritten as

/
V(X):—i + ld-dv—i—x—)-)y = v(x) Qx).

Dividing through by v(x) results in

dy.

dx v(x) dx

( 1 qz.(.x)..)y = .

The original differential equation was

L+ Py = Q.




By comparing terms in the two equations, it is seen that

1 dv(x) _
ey ax - T®
or, integrating,
dv(x)
~ (=) ) fP (x) dx

In (v{x)) = fP(x) dx

eJP&)dx

vix) =

The quantity v(x) is known as the integrating factor for the original
differential equation. The solution of the alternate form, i.e.,

vy = v Q)
can be written as

vix) y = fv(x) Q(x) d&x + C

or

1 C
y = V(X) Iv(x) Q(x) dx + V(X)

Note that if the differential equation is homogeneous, i.e., Q) = 0,
then

c . Ce—fP(x) dx
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This solution form is always the solution for

dy =
Ix + P(x) vy 0

This is a very important special case. In the case of the linear
homogeneous first order differential equation,

dy -
ax + P(x) vy 0

note that the variabled can be separated variables and a solution can
be obtained in that manner; {i.e,,

%X + P(x) dx = 0
In(y) + fP(x) d« = C' = 1n C
in (%) = —fP(x) dx

Yy —fP(x) dx
c = e

or

y = Ce-fP(x) dx

as before,

The following examples will illustrate the solution of linear first
order ordinary differential equations.

EXAMPLES:
gz- =
ax + 4y 0

By inspection, the solution is

I.4



—bfh dx -4x

y = Ce = Ce Ans.

dy 4 -

Ix 4y 2x

v(ix) = e 4dx ebx

A -
v = e x‘}GZ x e(‘\x dx + Ce 4x
g = e-bx (%—ehx _ % eéx R
Ans.

EXAMPLE DIFFERENTIAL EQUATION

QX+ =

™ 2xy 4x

a. Can it be integrated directly?

NO - the second term contains a mixture of x and y.

b. Can the variables be separated?
dy + 2xy dx = 4x dx

4% 4x
y

%1 + 2x dx

Can't separate.
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c. Is the D.E. exact?

(2xy - 4x) dx + 1ldy = 0

Lx Lon
M _ N
5; = 2x 3% 0

Not exact.

d. Integrating factor

dy + (2x) y dx (4x) dx

T 3

P(x) Q(x)
J 2
vix) = e 2x dx = X
2 x2 x2
e* dy + 2xe’ ydx = 4xe” dx
x2 x2 x2
‘e dy + ye” (2x) dx = 2e° (2x) dx

to this step

Could have ~ x2 1 (’XZ
gone directly %J dle yJ' = Zd e’ (2x) dx
2

x2 X
y e = 2e + C
y = 2 + Ce
Check to see if y 1is a solution
2
L= o) e
—x2 —x2 ?
-2C x e + 2x (2 + Ce ) = 4x
4x
4%
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CHAPTER

EQUATIONS OF MOTION

REVISED OCTOBER 1978

2.1 INTRODUCTION

These notes are written as a general classroom text for the theoreti-

cal approach to Flying Qualities in the course curriculum of the USAF Test Pilot
School.

The theoretical discussion will, of necessity, incorporate certain
simplifying assumptions. These simplifying assumptions are made in order
to make the main elements of the subject more clear. The equations
developed are by no means suitable for design of modern aircraft, but the
basic method of attacking the problem is valid. With the aid of high speed
camputers, the aircraft designers' more rigorous theoretical calculations,
modified by data obtained from the wind tunnel, often give results which closely
predict the flying qualities of new airplanes. However, neither the thecretical
nor the wind tunnel results are infallible. Therefore, there is still a valid
requirement for the test pilot in the development cycle of new aircraft.

2.2 TERMS AND SYMBOLS

There will be many terms and symbols used during the stability and
control phase. Some of these will be familiar, but many will be new. It
will be a great asset to be able to recall at a glance the definitions

represented by these symbols. Below is a condensed list of the terms and
symbols used in this course:

2.2.1 Tums

Stability Derivatives - Nondimensional quantities expressing the variation

of the force or moment coefficient with a distur-
bance from steady flight.

ac
Cma = o (2.1)
aC
n
CnB Py ' (2.2)

Stability Parameters - A quantity that expresses the variation of force

or moment on aircraft caused by flight or by a dis-
turbance from steady £flight.

_ pUSc U m . . .
M =3 [Cm + 5 'a'ﬁ_] (Change in pitching moment caused (2.3)

y by a change in velocity)
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Z__'C (Change in 1lift caused by a (2.4)
9 m Lq change in pitch rate)

sEXT=RtDWt®Y - The initial tendency of an_éirpganq‘pcugeturphggrstggdy

state flight after a disturbance.’ e

DTN 5% — The time history of the response of an airplane to-a
disturbance, in which the aircraft ultimately returns
to a steady state flight.

a) Static - The airplane would have no tendency to move from its
disturbed condition.

b) Dynamic - The airplane would sustain a steady oscillation caused
by a disturbance.

A characteristic of an aircraft such that when dis-
turbed from steady flight, its tendency is to depart
further or diverge from the original condition of
steady flight.

AR e ger—~ Time history of an aircraft response to a disturbance
in which the aircraft ultimately diverges to depar-
ture or destruction.

- Any control movement or deflection that
causes a positive movement or moment on
the airplane shall be considered a posi-
tive control movement. This sigpn conven-

. tion does not conferm—to—the_convention

e . i —
used by NASA and some-reference text
books. - This convention is the easiest
to remember and is used at the Flight

Test Center, therefore, it will be used

in the School.

e e reeedsm - The number of paths that a physical system is free
to follow.
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2.2.2 symBoLs

Symbol

a.c.

1
iy
~l

2'4

Definition

Aerodynamic Center: A point located on the wing chord
(approximately one ‘quarter of the chord length back of
the leading edge for subsonic flight) about which the
moment coefficient is practically constant for all
angles of attack.

Chordwise Force: The component of the resultant aero-
dynamic force that is parallel to the aircraft reference
axis, (i.e., fuselage reference line),

Mean Aerodynamic Chord: The theoretical chord for a
wing which has the same force vector as the actual

wing (also MAC). '

Center of Pressure: Theoretical point on the chord
through which the resultant force acts.

Drag: The component o©of the resultant aerodynamic force

parallel to the relative wind. It too must be specified
whether this applies to a complete aircraft or to parts

thereof.

Applied forcevVector.

Control forces on the aileron, elevator, and rudder,
respectively.

Components of applied forces on respective body axes.

Applied moment vector.

Components of applied moments on respective body axes.

Angular momentum vector,

Hinge Moment: A moment which tends to restore or move
a control surface to or from a condition to equilibrium,

Mg
Components of the angular momentum vector on the body t??'
axes, ’ ; N
ol s
Moment of Inertia: With respect to any given axis, the s

moment of inertia is the sum of the products of the mass
of each elementary particle by the square of its distance
from the axis., It is a measure of the resistance of a
body to angular acceleration.

Unit vectors in the body axis systenm,



SXEbol

I_,I

Ixy'I

I

yz’Ixz

LM

P,0,R
PsQsr

u,v,w
UV oW

Definition

Moments of inertia about respective body axes.

Products of inertia.

Lift: The component of the resultant aerodynamic force
perpendicular to the relative wind. It must be speci-
fied whether this applies to a complete aircraft or to
parts thereof.

Aerodynamic moments about x, y, and z body axes.

Normal Force: The component of the resultant aerodynamic
force that is perpendicular to the aircraft reference
axis,

Angular rates about the x, y, and z body axes, respec-
tively.

Perturbed values of P,0,R, respectively.

Resultant Aerocdynamic Force: The vector sum of the 1lift
and drag forces on an airfoil or airplane.

Wing area.

Component of velocity along the x body axis at zero
time (i.e., initial condition).

Components of velocity along the x, y, and z body axes.
Perturbed values of U,V,W, respectively.

Aerodynamic force components on respective body axes
(Caution: Also used as axes in "Moving Earth Axis
System" in derivation of Euler angle equation. Differ-
entiation should be obvious).

Axes in the body axis system.

Angle of attack.

Sideslip angle.

Deflection angle of the ailerons, elevator, and rudder,
respectively.

Euler angles: pitch, roll, and yaw, respectively.

Total angular velocity vector of an aircraft.

Dimensionless derivative with respect to time.
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2.3 QVERVIEW

The purpose of this section is to derive a set of equations that
describes the motion of an airplane. An airplane has 6 degrees of freedom
(i.e., it can move forward, sideways and down and it can rotate about its
axes with yaw, pitch, and roll). In order to solve for these 6 unknowns,
6 simultaneous equations will be reguired. To derive these the following
relations will be used.

START WITH NEWTON'S SECOND LAW
F = gE' M ) (3 linear degrees
—— \ , of freedom) .
externally linear
applied force momentum
G = d (H) (3 rotational degrees
at of freedom)
— — .
externally angular
applied moment momentum
Six Equations for the Six Degrees of Freedom of a Rigid Body.

Y

Equations are valid with
respect to inertial space only.

v

OBTAIN THE 6 AIRCRAFT EQUATIONS OF MOTION

F.o=m (0+ Qv - RV) (2.5)

Longitudinal F,=m W+ PV - qu (2.6)
- _ _ 2 _ 22

G, =QI, - PR(I, =1I) + (p R) I, (2.7)

F,o=m (V+ RU - pw) (2.8)
Lateral- G, =PI + QR(I -1) - (R+PQ) I (2.9)
Directional X . x z Y . xz

G, =R I+ PQ (Iy -I) + (R -P) I, (2.10)

The Left-Hand Side (LHS) of the equation represents the forces and
moments on the airplane while the Right-Hand Side (RHS) stands for the
airplane's response to these forces and moments. Before launching into
the development of these equations it will be necessary first to cover
some basics.

2.5



2.4 BASICS
2.4.1 Coordinate Systems

There are many coordinate svstems that are useful in the analysis
of vehicle motion. According to generally accepted notation, all coordinate systems

will be right-hand orthogonal,

True Inertial Coordinate System

EARTH
AT Locatioen of origin: unknown

Approximation for space dynamics: the center of
the sun.

Approximation for aircraft: the center of the
earth.

Figure 2.1
The Earth Axis Systems
X
' Location of Origi

HOVING ‘%W XY PLANE IS =
EARTH Y HORIZONTAL Fixgd System; arbitrary 19cation
AXES Y Moving System; at the vehicle cg

The 2 axis points toward center

of the earth.

FIXED EARTH
AXES
The XY Plane

parallel to local horizontal.

The Orientation of the X axis is
arbitrary; may be North or an the initial
vehicle heading.

NOTE: There are two earth axis systems, the fixed and the moving.
An example of a moving earth axis system is an inertial
navigation platform. An example of o fixed earth axis is a
radar site.

Figwe 2.2
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YEHICLE AXIS SYSTEMS -

These coordinate systems are fixed to the vehicle. There are many
different types, e.g.,

A
Body Axis System.
Stability Axis System.
Principal Axis System.
Wind Axis System.

The body and the stability axis systems are the only two that will be used
during this course.

Body Axis System

The thit Vectars are 1 j k.

The Origin is at the cg.
The x z plane is in the wehicle plane
of symmetry.

The positive x axis points forward
alang the wvehicle horizontal
reference line.

The positive y axis points out the
right wing.

Figure 2.3 The positive z axis points dowrward :
tovard the bottam of the vehicle. -

Stability Axis System

P k_ .

'Iheunitvectorsareis,i s

]

The origin is at the cg.

The positive x axis points forward
colncident with the initial position
of the relative wind.

The x z plane must remain in the

lcle plane of symmetry, hence this
stability axis system is restricted to .
symetrical initial flight conditions.

y BODY=y STAB

i.e., THE STABILITY x 2PLANE The positive z axis points downward
REMAINS IN THE VEHICLE PLANE toward the bottom of the wehicle
OF SYMMETRY normal to the axis. Angle of Atfack
) is a_at t = 0. i
Figure 2.4 © -
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2.4.2 Vector Definitions

The Equations of Motion describe the vehicle motion in terms of

four vectors(F, G, Vp, w). The components of these vectors resolved along
the body axis system are shown below.

T - Total Linear Force (Applied)

F = T+ J + K
F FX:L ij Fz

G - Total Moment (Applied)

= - - £
G le + Gyj + Gz

= .+ G
Gaerodynamlc other sources

Q)

-

Gaeroclynamic B Laerol * MaoszroJ * Naero
G .= i+ T+
Gaerodynamlc 08 . 772 3 72 K

NOTE: Control deflections that tend to produce positive a(g, 77?, or
J/, are defined at USAF TPS to be positive (i.e. Right 6r* is positive).

\TT - True Velocity
\’/’T = UT + vy + Wk

where .
U = forward velocity
vy = side velocity /

W vertical velocity - —————-—I1
! a Q¥
a - Angle of Attack ~ //

For small o« and B8

VT cos 8 ::.,"VT

. — aan—=l W
s e O =T S1n \F
or
W
[ B
Ve
B - Sideslip Angle l
. =1,V
8 = sin (=) Figure 2.5
vV Z g
For small B8
LV
SR V—TT

CAUTION — OTHER DEFINITIONS ARE POSSIBLE
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w - Angular Velocity

PT + QF + Rk

w

where
P = roll rate
Q = pitch rate
R = yaw rate

2.4.3 Euler Angles — Transformation from the Moving Earth Axis
System 1o the Body Axis System

There are several reasons for using Euler angles in this development.
Some of them are:

1) Effect of aircraft weight is related to the body axes through
Euler angles.

2) When an inertial navigation system (INS) is available, data can
be taken directly in Euler angles. P, Q@ and R can then be deter-
mined through a transformation.

Euler angles are expressed in terms of YAW (y), PITCH (&) and ROLL (¢).
The sequence (YAW, PITCH, ROLL) must be maintained to arrive at the proper
set of Euler angles.

> il
PARALLEL TO
EARTH PLANE

EARTH PLANE

N
-

Figure 2.6 \
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¥ - Yaw Angle - The angle between the projection of x Dbody axes
onto the horizontal plane and the initial reference

position of the X earth axis. (Yaw angle is the
vehicle heading only if the initial reference is
North).

8 - Pitch Anyle - The angle measured in a vertical plane between the
x body axis and the horizontal plane.

¢ = Bank An.ul.- -~ The angle, measured in the yz plane of the body
system, between the y Dbody axis and the horizontal
pplane. For a given ¢ and @, bank angle is a measure 7 the
rotation about the x axis to put the aircraft in the desired
position from a wings horizontal conditicn.

Angular Velocity Transformation -~ The following relationships, de-
rived by vector resolution, will
be useful later in the study of

dynamics.

P = ¢ - ¢ sin o (2.11)
Q = & cos ¢ + v sin ¢ cos 8 (2.12)
R = % coS ¢ COS 6 = 8 sin ) (2.13)

The above equations transform the angular rates in the moving earth
axis system (y,6,%) into angular rates about the body axis system (P, O,
R) for any alrcraft attitude. For example, it is easy to see that when
an aircraft is pitched up and banked, the vector ¢ Will have components
along the % y and z Dbody axis (figure 2.7). Remember, ¢ is the
angular velocity about the 2 axis of the Moving Earth Axis System (it
can be thought of as the rate of change of aircraft heading). Although
it is not shown in figure 2.7, the aircraft may have a value of & and
+ . In order to derive the transformation equations it is easier to
analyze one vector at a time. First resolve the components of v on the
body axes. Then do the same with 8 and ¢ . The components can then
be added and the total transformation will result.

Figure 2.1 0mmmmnof$AmM x, ¥,and % Body Axes. '
The X and Y Axes of the Moving Earth Axis System l
Are Not Shown, 7
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Derivation of the Angulor Yelocity Transformation

Step 1 - Resolve the components of ¥ along the body axes
for any aircraft attitude.

It is easy to see how ¢ reflects to the body axis by starting
with an aircraft in straight and level flight and changing the aircraft
attitude one angle at a time. In keeping with convention, EEE_EEggggce—
of change will be yaw, pitch and bank.

First, it can be seen that the Z axis of the Moving Earth Axis
System remains aligned with 2z axis of the body axis system regardless
of the angle vy; therefore, the effect of ¥ on P, Q, and R does not
change with yaw angle,

JeR =9

Figwe 2.8

Z,3
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Figurs 2.8

Next, consider pitch up, in this attitude, & has components on

the x and 2z body axes.
P = -y sin @

R = ¢y cos 6

The 2 axis is still perpendicular to the y body axis, so
affected by  1in this attitude.

Finally, bank the aircraft, leaving the pitch as it is.

%

Q =y cos O sin ¢ .
R=y cos § cos ¢

Figra 2.18
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All of the components are now illustrated. Notice that roll did
not change the effect of ¢y on P. The components, therefore, of y in the
body axes for any aircraft attitude are:

i sin ©

P:

cos 6 sin ¢

]
e

‘Effect of ¢ only. Q

R =1V cos 8 cos ¢

Step 2 - Resolve the components of 8 along the body axes
for any aircraft attitude.

Remember 8 1is the angle between the x body axis and the local
horizontal. Once again, change ‘the aircraft attitude by steps in the
sequence of yaw, pitch and bank and analyze the effects of o,

Figure2.11

_ It can be seen immediately that the yaw angle has no effect. Like-
wise when pitched up, the y body axis remains in the horizontal plane.
Tnerefore, 4§ 1is the same as (Q in this attitude.

Q=34
Now bank the aircraft.
R:—ésin(ﬁ

Figure 2.12 Q=6 cos 4 .
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It can be seen from figqure 2.12 that the components of § on the body
axes are

8 cos ¢

Q

R =-6 sin ¢

Notice that p 1is not affected by & since by definition 6 is measured
on an axis perpendicular to the x body axis.

Step 3 - Resolve the components of ¢ along the body axes.

This one is easy since by definition ¢ is measured along the x
body axis. Therefore, ¢ affects the value of p only, or

P = ¢

The components of @, 8, and $ along the x, y, and 2z body axes *\
for any aircraft attitude have been derived. These can now be summed
to give the transformation equations.

P=04 - i sin ©
Q = é cos $ + ¢ sin ¢ cos 6
R = & cos - 6 gin 4

2.4.4 Assumptiens

The following assumptions will be made to simplify the derivation
of the equations of motion. The reasons for these assumptions will become
obvious as the eguations are derived.

Rigid Body - Aerocelastic effects must be considered separately.

Earth and Atmosphere are Assumed Fixed - Allows use of Moving Earth Axis
System as an "inertial reference"
so that Newton's Law can be applied.
Constant Mass - Most motion of interest in stability and control takes
place in a relatively short time.

The x z Plane is a Plane of Symmetry - This restriction is made to simplify
the RHS of the equation., It allows the cancellation of certain terms
containing products of inertia. The restriction can easily be removed by

including these terms. This causes two products of inertia, Ixy and Iyz’ to be zero.

2.5 RIGHT-HAND SIDE OF EQUATION

The RHS of the equation represents the aircraft response to any
forces or moments that are applied to it. Through the application of
Newton's Second Law, two vector relations can be used to derive the six
required equations. These are the linear force and moment relations.
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2.5.1 Linear Force Relation

The vector equation for response to an applied linear force is

= _ 4 (mV)
F = T (2-14)

or the change in momentum of an object is equal to the force applied to
it.

This applies, of course, only with respect to inertial space. There-
fore, the motion of a body is determined by all the forces applied to it
including gravitational attraction of the earth, moon, sun, and even the
stars. In most cases, the practical person disregards the effect of the
moon, sun, and stars since their influence is extremely small, When con-
sidering the forces on an aircraft, the motion of the earth and atmosphere
can also be disregarded since the forces resulting from the earth's rota-
tion and coriolis effects are negligible when compared with the large
aerodynamic and gravitational forces involved. This simplifies the
derivation considerably. The equations can now be derived using either
a fixed or moving earth axis system. For graphical clarity consider a
fixed earth axis system. The vehicle represented by the dot has a total
velocity vector that is changing in both magnitude and direction.

Figure 2.13
From vector analysis,

v,

[o})

dVT
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Substituting this into equation 2.14, and assuming mass is constant,
the applied force is,

|
i
8
+
e}
>
<

which in component form is

i 7 k
F=m|{UT +yJT +WK +|p Q
U Vv W
Expanding
F=m (UL VT +WK + (W - R)T - (AW - RU)T + (PV - QU)K]
Rearranging
Fem [((U+QW - R)T + (V + RU = PW)T + (W + BV - QK]
Now since
F=Fx:.+Fy3+FzE

These three component equations result:

Fy=m (U+ Q4 - RV) (2.15)
Fy = m (V+ RU -~ PW) (2.16)
F,=m (W+ PV - QU) (2.17)

2.5.2 Moment Equations

Once again from Newton's Second Law,

= _ 4
G = = (2.18)

or the change in angular momentum is equal to the total applied moment.

Angular Momentum

Angular momentum should not be as difficult to understand as some
people would like to make it. It can be thought of as linear momentum
with a moment arm included.
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Consider a ball swinging on the end of a string, at any instant of
time,

Figure 2.14

Linear momentum = mV
and
Angular momentum = mrV (axis of rotation must be specified).

Therefore, they are related in the same manner that forces relate
to moments.

Moment = Force - r
Angular Momentum = Linear Momentum : r

and just as a force changes linear momentum, a moment will change
angular momentum.

Angular Momentum of an Aircraft

Consider a small element of mass m], somewhere in the aircraft, a

distance Fl from the cg

Figure 2,15
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The airplane is rotating about all three axes so that
» =PI +QF + Rk (2.19)

and

ry = xli + Ylj + zlk (2.20)

The angular momentum of mj 1is

Hpy = my (rl X Vl) (2.21)
and
Vl = g5 (i.e., in the inertial frame)
XYZ
From vector analysis
k| Bl +TXFT (2.22)
dt XYZ dt XYz 1

Since the airplane is a rigid body rj does not change. Therefore the
first term can be excluded, and the inertial velocity of the element mj is

Vl = w X I, (2.23)

Substituting this into equation 2.21

Hml = my (r

——————

L X » X Fl) (2.24)

This is the angular momentum of the small element of mass m;. In order

to find the angular momentum of the whole airplane, take the sum of all
the elements. Using notation in which the i subscript indicates any
particular element and n is the total number of elements in the airplane,

X o xt, 1| Torbe b o0 (2.25)
i ﬁ\ﬁéﬂ)b ',J11>r\
where )NC’\=
r; =x;1+y;3+ z,k (2.26)
then
I 3 k
w X 'r‘i = P Q R (2.27)
X Yy 23
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In an effort to reduce the clutter, the subscripts will be left off. The

determinant can be expanded to give,

w XT=(Q -8By)I + (Rx -pP2)] + (Py - qx)k
therefore, equation 2.25 becomes

T 7 k

i
]

Im X Yy z
(Qz-Ry) (Rx-Pz) (Py-Qx)

So the components of H are

H = Imy (Py - Qx) - Imz (Rx - Pz)

Jo
]

tmz (Qz - Ry) - imx (Py - Qx)

H, = Imx (Rx - Pz) - tmy (Qz - Ry)

Rearranging the equations

H =PIm (y2 + ZZ) - QImxy - RImMxz
Hy = Qim (22 + xz) - Rimyz - Pimxy
H, =RIm (x2 + yz) - Pimxz - QImyz

Define moments of inertia

Im (y2 + 22

2 2
y m (x° + z°)

[
"

)

H
i

Im (x2 + yz)

[
]

These are a measure of resistance

to rotation - they are never zero.
Y Figure 2.16
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(2.31)
(2.32)
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Define products of inertia

I, = I mxy x
Xy
I = [ myz
Yz Ix3=(+)
I, = L mxz FOR THIS EXAMPLE
Figwe 2.11
F4
These are a measure of symmetry. ngz.ixs—zezg_ggiiviews havin ine
of gymmetry.
The angular momentum of a rigid body is therefore:
' (2.36)
So that
(2.37)
(2.38)
(2.39)

1

Simplification of Anguiar Moment Equation for Symnxlc Alrcraft

A symmetric aircraft has two views that contain a line of symmetry
and hence two products of inertia that are zero. The angular momentum of

a symmetric aircraft therefore simplifies to:
g =

(PL_ - RIXZ)I + Qij + (RIz - PIxz)k (2.40)

Figwe 2.13 v 3 le(lyar0)
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Derivation of the Three Rotational Equations

The equation for angular momentum can now be substituted into the
moment equation. Remember

G

(2.41)

o1a
| m)

XYZ

applies only with respect to inertial space. Expressed in the fixed body axis system,
the equation becomes:

which is

Remember

G =

Q

N

=i + @ X H (2.42)
Xyz
i 3 k
Hxl + Hyj + sz + P Q R (2.43)
H, H, H,
(PI, - RI T + QI,J + (RI, - PI )k (2.40)

Since the body axis system is used, the moments of inertia and the -
products of inertia are constant. Therefore, by differentiating and sub-
stituting, the moment equation becomes

T 3 k
G =(pI - & T AT T 2T - p 73 2.45)
G = (pI, - RI )T + QI J + (RI, - PI_ )k + P Q R (
(PIX - RIxz) QIy (RIz -PI)
Therefore, the component equations are,
Gx =PI + QR(Iz - Iy) - (R + H)Ixz (2.46)
. 2 2

Gy = QIy - PR(Iz - Ix) + (p° - R )Ixz (2.47)
= F - - 7P .48

G, = RI, + PQ(IY I) + (@R P)I_, (2

This completes
Remember the RHS is the aircraft response or the motion of the
aircraft that would result from the application of a force or a moment.
The LHS of the equation represents these applied forces or moments.

page 2.6.
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2.6 LEFT-HAND SIDE OF EQUATISN
2.8.1 Terminology

Before launching into the development of the LHS, it will help to
clarify some of the terms used to describe the motion of the aircraft.

Steady Flight - Flight in which the existing motion remains steady with
time, i.e., no transient conditions exist.

Symmetric Flight - (Longitudinal Motion) - Flight in which the vehicle
plane of symmetry remains fixed in space.

vV = 0 P = R = 0
(8 = 0) (¢ and § = 0)
Asymmetric Flight - (Lateral Motion) - Flight in which the vehicle plane
of symmetry does not remain fixed in space.
v # 0 Pand/or R # 0
(g # 0) (¢ and/or v # 0)

2.6.2 Some Special-Case Vehicie Motions

Unaccelerated Flight
(Also called straight flight or equilibrium flight.)
Ex = 0 Fy = Q Fz =0

Hence, the cg travels a straight path at constant speed. Note that
equilibrium does not mean steady state. For example, v

F,=m (U + QW - RV) =0

could be maintained zero by fluctuation of the three terms on the right
in an unsteady manner. In practice, however, it is difficult to predict
that non-steady motion will remain unaccelerated and hence the straight
motions most often discussed are also steady state.

Steady Straight Flight Steady Rolls or Spins

Fx =0 F. =0 Fx = 0 F_ =0 By custom this is
Y Y not called straight

F_ =20 G_ =20 F_ =20 G, =20 flight even though

z X z X the cg may be
G =20 G =0 p=Q=R=0]G, =20 G, =0 traveling a
R4 z PR — N 4 2% straight path
On the average Excluded by on the average

custom

Trim Points, Stabilized Points Steady Developed Spins
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Accelerated Flight (Non-Equilibrim Flight)

One or more of the linear equations is not zero, hence the cg -~

is not traveling a straight path.
interest. . '

Steady Turns

An unbalanced horizontal force
results in the cg being con-
stantly deflected inward toward
the center of a curved path.
This results in a constantly
changing yaw angle. By the
Euler angle transform,

P = - ¢8 (assumes small 8)

Q= ¢ sin ¢ cos 6 = § sin ¢

R= 1§y Ccos ¢ cos 6 = & cos ¢

and hence

Fy =m () cos ¢)U

F, = -m (¢ sin ¢)U (assumes ¥

small)

Includes moderate climbs and
descents.

is very very

Again the steady cases are of most

Symmetrical Pull Up

Here an unbalanced 2z force is
constantly deflecting the cg

upward.
Q = 6
Ex ~ mW
and
F, =~ -mnU

This is a quasi-steady motion
since {J and W cannot long
remain zero.

2.6.3 Preparation for Expansion of the Left-Hand Side

The Equations of Motion relate the vehicle motion to the applied

forces and moments.

LHS

Applied
Forces and Moments

RHS

Observed
Vehicle Motion

F = mu + - - - -
X

G, = PI, + -~ -~
etc.

The RHS of each of these six equations has been completely expanded in

terms of easily measured quantities.
to include Stability Parameters and

terms of convenient variables,
Derivatives.

Before this can be accomplished, however,

The LHS must also be expanded in

the following

topics must be discussed and understood.
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2.8.4 Initiat Breakdewn of the Left-Haad Side

In general, the applied forces and moments can be broken up

ing to the sources shown below,

Source
Aero- Direct Gyro-
dynamic | Thrust | Gravity| scopic | Other
3 Fx X XT Xg 0 xoth
a
g Fz 2 ZT Zg 0 zoth
§ GY 272 MT 0 ngro Moth
2 Fy Y YT Yg 0 YOth
<38
5 G Gx ;f LT 0 Lgyro Loth
[T
35 Gz 77 Np ° Ngyro Noth

1. Gravity Forces - These vary with orientation of the weight

Xg =

2. Gyroscopic Moments - These ocgur as a result of large rotating masses

-mg sin 8

Yg = mg cos 6 sin ¢

such as englnes and props.

accord-

(2.49)
{(2.50)

(2.51)
(2.52)

(2.53)
(2.54)

vector.

Zg = mg cos 8 cos ¢

3. Direct Thrust Forces and Moments -~ These terms include the effect of

the thrust vector 1itself - they usually do not include the indirect
or induced effects of jet flow or running propellers.

4. Aerodynamic Forces and Moments - These will be further expanded into

Stability Parameters and Derivatives,

5. Other Sources - These include spin chutes, reaction controls, etc.

2.8.5 Aerodynamic Forcss and Moments

By far the most important forces and moments on the LHS of the
Unfortunately they are also the

equation are the aerodynamic terms.

most complex. As a result, certain simplifying assumptions are made and

several of the smaller terms are arbitrarily excluded to simplify the
Remember we are not trying to design an airplane around some
We are only trying to derive a set of equations that

analysis.

critical criteria.

will help us analyze the important factors affecting aircraft stability
and control,
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Cholcs of Axis System x body axis

Consider the aerodynamic forces on an airplane

P x stability axis

< IR,

Figure 2.19

Summing forces along the x body axis

Fx =L sin a = D cos a (2.55)

Notice that if the forces were summed along the x stability axis, it
would be

P o= - D (2.56)

Obviously, it would simplify things if the stability axes were used for
development of the aerodynamic forces. A small angle assumption will
enable us to do this. Let's assume that a is always small enough so that

cos a~1 : —_
sin a = 0

Using this assumption, equation 2.55 reduces to equation 2.56. Whether

it be thought of as a small angle assumption or as an arbitrary choice of
the stability axis system, the result is the same. The complexity of

the equation is reduced. This of course would not be done for preliminary
design analyses, however, for the purpose of deriving a set of equations
to be used as an analytical tool in determining handling qualities, the
assumption is perfectly valid, and in fact, is surprisingly accurate

for relatively large values of a.

Therefore, the aerodynamic terms will be developed using the sta-
bility axis system so that the equations assume the form,

"DRAG" -D + X, + xg + Xoen =my + - - - - (2.57)
"LIFT" -L + 2, + zg * Zoen =l + - - - - (2.58)
"PITCH" 7/ + M, + Movro * Motn = QIY + = - - - (2.59)
"SIDE" Yok Yp b Yoy =mV + - - = = (2.60)
"ROLL" L+ Lp + Loyro * Lotn = PIx + - - = = (2.61)
"YAW" 27 + 85+ Noyro * Notn = RI, + - - - - (2.62)
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Expunsion of Aerodynamic Terms

A stability and control analysis is concerned with the question of
how a vehicle responds to certain perturbations or inputs. For instance,
up elevator should cause the nose to come up; or if the aircraft hits
some turbulence that causes a small amount of sideslip, the airplane
should realign itself with the relative wind. Intuitively, it can be
seen that the aerodynamic terms are going to have the most effect on the
resulting motion of the aircraft. Unfortunately, the equations that re-
sult from summing forces and moments are non-linear. As a result, exact
solutions to these equations are impossible. Therefore, a technique to
linearize the equations must be used so that solutions can be obtained.
In order to do this the small perturbation theory is introduced.

Small Perturbation Theory

The small perturbation theory is based on a simple and very popular
technique used for linearizing a set of differential equaticns., In a
nutshell, it is simply the process of expanding the equations using a
Taylor series expansion and excluding the higher order terms. To fully
understand the derivation some assumptions and definitions must first be
established.

The Small Disturbance Assumption

The aerodynamic forces and moments are primarily a function of the
following variables:

1. Temperature and Altitude

Accounted for by o, M, Re‘

2. Angular Velocities

Accounted for by P, Q, R,

3. Control Deflections

;S

Accounted for by 6e, § r

a

4, Position and Magnitude of the Relative Wind

Accounted for by the components U, V, W of true velocity, or
alternately, by:

1

A=

u, 2 Bzv\{—
T

In general, the time derivatives of these variables could also be
significant. In other words:
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VARIABLE | FIRST DERIVATIVE | SECOND DERIVATIVE
~
3 .« o« . e
D Ua B Ua 8 U = = = =
L
7. | Are a P QR p - - P --- -
rFunctionﬁ
of
Y
2 .
pd § §_ & |8 - - - - -
e a r e
7ZJ P M Ré + assumed constant

This rather formidable list can be reduced to workable proportions
by making the assumption that the vehicle motion will consist only of
small deviations from some initial reference condition. Fortunately,
this small disturbance assumption applies to many cases of practical
interest, and as a bonus, stability parameters and derivatives derived
under this assumption continue to give good results for motions somewhat
larger,

The variables are considered to consist of some initial value plus
an incremental change, called the "perturbated value." The notation for
these perturbated values is sometimes lower case and sometimes lower case
with a bar.

= P= P =)
P Po + p o + p
- U= a
U UO + u ° + u

It has been found from experience that when operating under the
small disturbance assumption the vehicle motion can be thought of as
two independent motions each of which is a function only of the variables
shown below,

1. Longitudinal Motion

(0, L) = £ (U, a, a, @ &) (2.63)

2, Lateral-Directional Motion

(lel”) = f (8, é, P, R, ¢

ar 6 (2.64)

Initial Conditions

It will be assumed that the motion consists of small perturbations
about some initial condition of steady straight symmetrical flight. From
this and the definition of stability axes, the following can be stated:
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V_ = U_ = constant
T o
VO =0 Bo =0
wo = 0 a, = constant
Po = QO = Ro =0
(o, M, R, aircraft ) = constant

configuration.

2,.6.6 Expansion by Taylor Series

As previously noted, the longitqdinal motion can be assumed to be
a function of five variables, U, a, a, Q, and §eg. The aerodynamic forces
and moments can therefore be expressed by a Taylor's expansion.

For example:

— 5 _—
oL 1 3°L 2
Loty +t3—7 av t---
U
+EAa +laLAa2 + - = =
o z
— Ia
L = + 3L a4 + - - - - (2.65)
da
aL
3L

But we have decided to express the variables as the sum of an initial
value plus a small perturbated value

U=U,+u where u =10 ~U = 4U (2.66)

3 Zero 0
3L _ 3L o AL 3y* 3L
30 T 3T, % * 3a i Ty (2.67)

and the first term of the expansion becomes

Therefore

3y

@
[

AU = T u (2.68)

[~

.29




Similarly:

L 4o = 3L
TQ AQ = 3q q (2.69) )
S’
We also elect to let o = Aa, & = Aa and §ag = A8 _ .

e

Dropping higher order terms involving u2, qz, etc., equation 2.65 now
becomes

_ 3L L 3L + . AL 3L
L—L°+3€u+ﬁa+—‘a+b—q-q+5?-e_6e (2°70)

The lateral-directional motion is a function of 8, é, P, R, 8a, 6,
and can be handled in a similar manner. For example, the aerodynamic
terms for rolling moment become:

_ 3 2L . 3 L P i
x -OZO + g‘éz B“";’é— g + -a-—p- P + a—r— r + ﬁ: éa
36 r (2.7

This development can be applied to all of the aerodynamic forces and

moments. The equations are linear and account for all variables that ~
have a significant effect on the aerodynamic forces and moments on an
aircraft.

The equations resulting from this development can now be substituted
into the LHS of the equations of motion.

2.6.7 Effects of Weight

The weight force acts through the cg of an airplane and as a result
has no effect on the aircraft moments. It does affect the force equations

as shown below.
Thrust L/lno(( U

Horizon

L

Zj (Distonce Between
Thrust Line and cg)

Figure 2,20
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The same "small perturbation" technique can be used to analyze
the effects of weight. For longitudinal motion, the only variable to
consider is 8. For example, consider the effect of weight on the x axis.

Xg = -W sin @ (2.72)

Since weight is considered constant, 6 is the only pertinent variable.
Therefore, the expansion af the gravity term (xg) can be expressed as

X
X =X + -3 g X = jinitial conditi of X .
g 9, 55 ( g, ondition g) (2.73)

For simplification and clarity, the term Xg will hereafter be re-
ferred to as drag due to weight, (Dw ). This in essence incorporates
the same small angle assumption that was made in development of the aero-
dynamic terms, however, as before, the effect is negligible. Therefore,
equation 2.73 becomes

—_ oD
Dwt =D + — 8

Owt )

Likewise the Z force can be expressed as negative lift due to weight
(Lwt) , and the expanded term becomes

@
-

C]

Lwt = Lowt +

Q
@D,

The effect of weight on side force is dependent solely on bank angle (¢).
Therefore,

Y
Y =Y + — ¢
wt Ot 3¢

These then are the component equations relating the effects of gravity
to the equations of motion and can be substituted into the LHS of the
equations.

2.5.8 Effects of Thrust

The thrust vector can be considered in the same way. Since thrust
does not always pass through the cg its effect on the moment equation
must be considered (figure 2.20). The X component would be

XT = T cos ¢
The Z component is
ZT = -T sin ¢

The pitching moment component is,
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where 2y is the perpendicular distance from the thrust line to the cg.
For small disturbances, changes in thrust depend upon the change in for-
ward speed and engine rpm. Therefore, by a small perturbation analysis

_ 3T 3T -
T=T,* 3w * 353 6rpm (2.74)
rpm

Thrust effects will be considered in the longitudinal equations only
since the thrust vector is normally in the vertical plane of symmetry
and does not affect the lateral-directional motion. When considering
engine-out characteristics in multi-engine aircraft; however, the asym-
metric thrust effects must be considered. Once again, for clarity, Xr
and Zp will be referred to as drag due to thrust and 1lift due to thrust.

Thus:
X rusr = (To + 32U + 3—?;; §eom) (GOS8 €) (2.75)
ZTHRUST = -(To + %g u + %%——— arpm) (sin ¢€) (2.76)
rpm
Moprusy = (To * %% u + g'grpm S eom? (i) (2.77)

2.6.9 Gyroscope Effects

For most analyses, gyroscopic effects are insignificant. They begin
to become important as angular rates increase, (i.e., P, Q, and R become
large). For static and dynamic stability analyses, angular rates are nct
considered large. In the area of spins and maximum roll rate maneuvers,
they are large and definitely affect the motion of the airplane. There-
fore, for spin and roll coupling analyses, gyroscopic effects will be
considered. However, in the basic development of the equations of motion,
they will not be included.

2.1 REDUCTION OF EQUATIONS TO A USABLE FORM
2.1.1 Normalization of Equations

Now that the linearized expressions have been derived, we begin the
process of putting them in a more usable form. One of the first steps
in this process is to "normalize" the equations. 1Initially, the reason
for doing this will not be apparent. It is a necessary step in the
simplification of the equations, however, and the rationale will become
apparent later,

In order to do this each equation is multiplied through by a "nor-
malization factor". This factor is different for each eguation and is
picked primarily to simplify the first term on the RHS of the eguation.
The following table presents the acrmalizing factor for each eguation.
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Normalizing First Term is Now
Equation Factor Pure Accel or a B8 Units
"DRAG" 1 -2 )Ez + = = == U —-- ( £t ]
m " m (2.78)
sec
"LIFT“ _l_. - _L.._ + ZT P - w- - = Q_. + = [Eﬂ] (2 79)
mUo mUo mUo Uo sec :
" ' 1 D4T h ad
PITCH" ™ i@— + — + = = == g =--- (]—:——2-] (2.80)
Y b 4 y sec
"SIDE" . Y LT oLl .V, oY) (2
mUo mUo mUo Uo sec
L
" " 1 T * rad
ROLL — f’—gj—+1—+—--=p+--- ( ] (2.82)
b3 X X sec
N
"YAW" 11-_— 1&. + .I_T.. + = = =B Y F —m- [rad ] (2.83)
z z z sec

2.1.2 Stability Parameters

Stability parameters are simply the partial coefficients (%%, etc.)

multiplied by their respective normalizing factors. To demonstrate this,
consider the aerodynamic terms of the lift equation. By multiplying

equation 2,70 through by the factor ﬁé—, we get
o

L o 1 3L 1 sL 1 3L - 1 3L 1 3L rad
= —_— U+ — + e — + —— P £ e
m- T tmo- 5w Ut Ao; sw *tany L; ¢t au, 5q 4 mu, 5s, Ce [53c) (2.84)
o o o ) 2 a, L © , o ‘e
L L.

The indicated quantities are defined as stability parameters and the
equation becomes

L
L () . rad
——— —4 —— - 5 ———— -
mUO mUo + Luu + Laa + Laa + qu + Lsee{sec] (2.85)

Stability parameters have various dimensions depending on whether they
are multiplied by a linear velocity, an angle, or an angular rate
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1 ft rad 1 _ (rad
Lolggl @ zze! = leee! (g5g! o [radl = (51,
- .rad, _ .rad

L {ncne} « [EEEJ = [5534

The lateral-directional motion can be handled in a similar manner. For
example, the normalized aerodynamic rolling moment becomes:

§
%:éﬁ +£85 + a‘i éé +agpp +°grr +o<fda a +0(£6r5r [i:TI (2.86)

where

Lo =1 ‘”‘f/[l 1,

2

etc,
X sec

These stability parameters are sometimes called "dimensional derivatives"
but we will reserve the word "derivative" tc indicate the non-dimensional
form which can be obtained by rearrangement. This will be developed later
in this chapter.

213 Simpliti.caﬁon of the Equations

By combining alli of the terms derived so far, the resulting equations
are somewhat lengthy. In order to economize on effort, several simplifica-
tions can be made. For one, all "small effect" terms can be disregarded.
Normally these terms are an order of magnitude less than the more pre-
dominant terms. These and other simplifications will help derive a con-
cise and workable set of equations.

2.1.4 Longitudinal Equations
Drag Equation

The complete normalized drag eguation is

Aero Terms Gravity Terms
(el A N\ FD A R
D
o . 5 Cwt
— — . -+ + -
o T Dau * Daa Duu M qu * DGe e m * Dea

Thrust Terms
N

\
r_T + 2T 44 zg———é» (cos e) = U + gw - v (2.87)
L Ju pm rpm

gy )

o Bér
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Simplifying assumptions

T D, o
1. 2 cos e -2 - ¥ = (Steady State)
. (32 a + 3T § ) cose =0 (Constant rpm, 8T is small)
3 35 rpm 3a
rpm
3. xrww=20

(No lat-dir motion)
The small perturbation assumption allows us to analyze the longitudinal
motion independent of lateral-directional motion.
4., qw = 0

{Order of magnitude)

5. D+, D, and D are all small,
a q §

e

The resulting equation is

°[Da° + Duu + Deel = 4 (2.88)

Rearranging

u + Dua + Duu + Dee = 0 (2.89)

Lift Equation

The complete lift equation is

Aero Terms Gravity Terms

Ve A N Ie ™ B
L Ly
- |- +La+L.Gd+Lu+Lqg+L, & + wt 4
mu a o u q é e mo Lea
(o] e o
Thrust Terms
N
Is N
_ 1 3T 3T ’ . w + pv - qu
o rpm o
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Simplifying assumptions

Lo
L \ T
o t o . _
1. - m t o - gg— 8in e = 0 (Steady State)
o] o
aT 3T - 3T
2. g 4t T3 Grpm 0 (Constant rpm, =5 is small)
rpm
3. Lee =0 (Order of magnitude)
w . .
4. g = ¢ (a¢ is small)
o
5. pv =20 {(No lat-dir motion)
6. 3% = q - (u = U_)
UO (e}
Thus
- Laa - L&a - Luu - qu - Lée de = qa - g (2.90)
Rearranging
- L - (1 + L&) @ - Lu+ (L - Lq) q = Lée 8 (2.9L)

Pitch Moment Equation

77-&-+ 7770.+%

a + Zﬁuu + . s+ gt Thrust Terms

IY a o cSe e
(r_ - 1) 2 2
s z X (p~ - ")
=d - pr T + T Txz (2.92)
b4 Y
This can be simplified as before. Thus
& - Mo - MNys - M - 7}qu = 7%% 5, (2.93)

Now there are three longitudinal equations that are easy to work with.
Notice that there are four variables €, a, u, and g but only three
equations. To solve this problem, 8 can be substituted for q.

..

g=245 and q = 9
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Therefore the longitudinal equations become:

(8) (u) (a)

I | l
I | |
DRAG D 8 | + u+ Du + D a |
u | a
| 5 |
LIFT (1-L ) §| - Lyu | (L +1Lg) a =Loy
l | \
| I
PITCH 6 772qé| - M| - M - P |
1 I I

maes

There are now three independent equations with three variables. The
Therefore, for
any input 8o, the equations can be solved to get 6, u and a at any time,

terms on the RHS are the inputs or "forcing functions®

2.7.5 Latercl-Directional Equations

The complete lateral-directional equations are as follows:

Side Force

Y
o .
—_— +
- i + YBB + YéB + Ypp + Yrr + Y6 &a YG
o} a r
Yo .
wt =V + ru - pw
tam T Y, g ,

o o) -

Rolling Moment

L o :
E—+ o(ﬁse + ofée + ofpp + ogrr + Cﬂdasa

1 -1 I
=p + qr (—ET;—Y-)—(ii»pq)-lr’;:i

Yawing Moment

g

ZI?.;9-+ 7ZSB+ 2.8 + 7ZPP+ nrr*' 725

L]

. I, - I, .
=1 + pq (Lg—>) + (ar - p)
r4

u
N|><
N

(2.97)

+ L s
§ _'r

r

(2.98)

VR

r
r

(2.99)

(2.94)

(2.95)

(2.96)
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In order to simplify the equations, the following assumptions are made:

1. A wings level steady state condition exists initially. Therefore,
, Y , and Yo are zero, B

!
o o o wt ]
2. p=¢,p=20 (6 =0, see Euler angle transformations,
pg 2.11)
3. The terms Yéé, 7Zéé, &féé and Yga 6a are all small.
v . ,
4, g = g (g is small)
o)
ru
5., =—=7r {(u=0U)
UO o
6. q = 0 (no pitching motion)

(9)

- Y 4~
p¢ Y¢¢

(8)
SIDE §-Y.8

8 =Y, ¢ (2.100)
FORCE

=L s+ Z s (2.101)

ROLLING - o&.8

i |

MOMENT x r 64 @ S¢g T

I . |
YAWING -7 . 3' = X2 46 2ol v 0 =« e | = 7. 6.+ 7.6 (2.102)
MOMENT B I P r | 84 2 Sp T

Once again there are three unknowns and three equations. These equacions
may be used to analyze the lateral-directional motion of the aircraft.

2.7.6 Stability Derivatives

The parameteric equations give all the information necessary to
describe the motion of any particular airplane. There is only one prob-
lem. When using a wind tunnel model for verification, a scaling factor
must be used to find the values for the aircraft. In order to eliminate
this requirement a set of non-dimensional equations must be derived.
This can be illustrated best by an example:
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EXAMPLE

Given the parametric equation for pitching moment,
8 ~ HN& =M =-Na - WMo =77 6
q u a a Ge e

Derive an equation in which all terms are NON-DIMENSIONAL.

The steps in this process are

1. Take each stability parameter and substitute its coefficient rela-
tion, i.e.,

1 a:&? 1
;yy(q ol ol o 3 (2.103)
Y Y
Ch is the only variable that is dependent on g, therefore,

(2.104)

2. Non-dimensionalize the partial term, i.e.,

aC . .
m , . _ dimensionless _
g has dimensions = Tad/sec = secC

To non-dimensionlize the partial terms, there exist certain compensating
factors that will be shown later. 1In this case the compensating factor
is

c {£t] = sec
Iﬁ; [tt/sec]

Multiply and divide equation 2.104 by the compensating factor and get

2

pU
/Z%Z q = eg

This term is now dimensionless

check
aC . .
m = dimensionless _ dimensionless
3 (9 ft/sec
EUO ft7sec
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This is called a stability derivative and is written

c = ——n— - by definition

3. When the entire term as originally derived is cornsidered, i.e.,

pU Sc
_ o c
%qq— ) . . C - g

Define

cq (ft/sec] .. .
m dimensionless

Q>
i

.+ The term becomes

o A
;Vqu = C q
Dimensionless variable
' |-—b-lhmensxonless stability derivative
Constants

But q is expressed as 8 in the equation. To convert this substitute

d9 for
It q-

a cq _ _€ d(e)
ZUO ZUo dt

]

Then,

; c a( )
Define Vv = fﬁ; .

¥ can be considered to be a dimensionless derivative with respect to time
and acts like an operator.

2.“



therefore

A
q= Ve = Ig_ g%-(i.e., dimensionless derivative of )
o

4. Do the same for each term in the parametric equation.

but Cpg = 0 since initial conditions are steady state. The compensating
factor for this case is 1

Uo
2
'77?u=pU<2> Sc. .
LB ) u I
Y
c a
By

5. Once all of the terms have been derived, they are substituted into
the original equation, and multiplied through by

21
Y

on Sc

which gives

21
y .0 _ - _ - =
m <] Cm 7o Cm u Cm. ga Cm a C §
(o]

241




The first term is non-dimensional, however, it can be changed to a more

convenient form.

Multiply and divide by

2 2
c /4U°
2
ZIy 4Uo . c2 -. g
Z 2 2
aUO Sc¢ ¢ 4Uo
SIy
Define i = —r
Y pS ¢
( c d(e))
cZ E _c d ZUO dt
4U ZUo de
o}
=Vze
Therefore, the term becomes,
. 2
v- 8
ty
and the final equation is,
(1,92 -C¥) 6 =C 0 -(C_ Y-C Ja=cC &
i - - u - - a =
Y mq m, ms m, m, e

The compensating factors for all of the variables are listed below.

Non-Dimensional Angular Rates

Compensating
Angular Rates Factor
b
p = rad/sec T
o
c
g = rad/sec VI
o
b
r = rad/sec 55
o

2.42

A
= Pb _
p—fU— vé
(o]
A
gc
g = = V68
ZUO
A _rb _



Compensating

Angular Rates Factor Non-Dimensional Angular Rates
. b +_ &b
B=rad/sec Z'U—" B"m—= v e
o] o]
. c A _ ac
a = rad/sec I cx=2-——=Va
- Ug Ys
u = ft/sec 1 Qo= 3
U 9]
o] o

@ - no change

g - no change

These derivations have been presented to give an understanding

of their origin and what they represant. It is not necessary to
be able to derive each and every one of the equations. It is important,

however, to understand several facts about the non-dimensional equations.

1. Since these equations are non-dimensional, they can be used to
describe any aircraft that are geometrically similar.

2. Stability derivatives can be thought of as if they were stability
parameters. Therefore, Cmu refers to the same aerodynamic charac-

teristics as M,, only it is in a non-dimensional form.

3, Most aircraft designers and builders are accustomed to speaking in
terms of stability derivatives. Therefore, it is a good idea to
develop a "feel" for all of the important ones. )

4. These equations as well as the parametric equations describe the
complete motion of an aircraft. They can be programmed directly
into a computer and connected to a flight simulator. They may also
be used in cursory design analyses. Due to their simplicity, they
are especially useful as an analytical tool to investigate alrcraft
handling qualities and determine the effects of changes in aircraft
design.
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Basic Force Relations

To aid in developing the stability derivatives from the basic force
relations, the following table is provided.

LONGITUDINAL MCTION
Normaliz-
ing
Equation Coefficient Factor Parameters
1 2 1 : e ; . :
Drag D= xoU S CD = Du (Du requires special derivation)
(pg + D and D, are insignificant)
e
: 1.2 1 !
Lift L :— o U S CL EI-U— L L. Lq LG LG~
° e
Pitch [ =iov)scec L nmmnmm
b3 ™ I; ue Taqg 8,
Linear Velocity Angles Angular Rates
Independent u a &, a q
Variables
Compensating 1 c
Factors o None 0
o o
LATERAL~-DIRECTIONAL MOTION
Normaliz-
ing v
Equation Coefficient Factor Parameters
: 1 2 1
Side Y= IDU s CY W— YB YP Yt YG
o r
(YB and Ys are insignificant)
a
Roll Latotspe L L L XL XL L
7 £ I 8 p °r s [
x a r
(&, is insignificant)
1 2 1
Yaw Nl =5ou®sbc, T e %o % A5 Tls_
(7Zé is insignificant)
Angles Angular Rates
Independent 8 éa Gr 8 P r
Variables
Compensating None b
Factors ZBO
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Non-Dimensional Derivative Equations

A list of the non-dimensional derivative equations is presented
below.

NON-DIMENSIONAL LONGITUDINAL EQUATIONS

A
(8) (u) (=)

' !
I
~ !
Drag CL 3 + (2uv + CD + ZCDo)uI + CD a =0
Q u R [
| .
Lift (2u¥ - Cp 9o |- (¢ + ZCLo)u " (2uv s cpav = "L S
q u ) +Cple e
[ I e I
| i
| | |
. . . V2 A
Pitching (i - Cm V)B] - Cm u I - (C_97 + C )°l= c 5
Moment Y q u 1 a Q m6e e
81 2m
i = —13- u = T
4 oS ¢ 9s¢
v = S d()
Uo dt
NON-DIMENSIONAL LATERAL-DIRECTIONAL EQUATIONS
(8) ! (6) | () l
[ | .l
Side (2uv - C, )8 |- (C, v+ C_ )¢ + (20 -¢, )r 1=C §
Force Y, | Yp L, l Y, ; YG: r
| | |
. : 2 ~
Rolling -C, 8 [+ (L.v° -c¢C, v)s L (i, 7+ cyr=cC 5. +C, ¢
Moment 9'8 x Zp z T 15 a 15 r
] | | a r
I | |
Yawing -C_ 38 - (i, 9% + Cn Vo + (i Y -cCc )rj=cC §. + C §
Moment Rg I * P | i n‘sa 2 nst i
L2 -
X 3 20 dt
o Sb o
8I
i - Xz L= 2m
Xz 3 0 3b
¢ Sb
81
i 0= z
2 L sp3
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3.  STABILITY AXIS

RELATIVE WIND
@ t=o0

A. Tixed to aircraft at t = 0.

B. Assume B8 = 0 (no sideslip) at t = 0

4. DEFINITION OF g (Sideslip)

!
a = {;— (radians)
t U

/== FELATIVE WD

t VT cos 8 zVT

v .
W B= o _(radlans)

A. Note positive B8 is wind in the right ear.




EQUATIONS OF MOTION
(SUPPLEMENT)

1. MOVING EARTH AXIS

Y Out of Paper
Z

—_—rT 7 7 / /R

EARTH

A. X and Y axis always remain horizontal.
B. Z axis always points to center of earth.

C. Assumed as an inertial reference.

ol

e

PT + QI

Ul + V3

<l €|
s

A. TFixed to aircraft, origin at CG.
B. x out nose, y out RT wing, z out bottom.

C. Aircraft and body axis rotate at w with respect to moving
earth axis.



EULER ANGLES

A. ¥ change in heading from T = g, positive to right

TOP VIEW

B. 8 angle between x axis and horizontal, positive nose up.

et

HORIZONTAL
T T T T 777 7 7TT777 77

=

SIDE VIEW

C. ¢ Bank Angle: For a given ¢ and 6, bank angle is a

measure of the rotation about the x axis to put the

air~raft in the desired position from a wings horizontal

condition. Positive right wing down.

—————— X

X
4 = 0 $ = 90° $ = 90°

Undefined

¢
HORIZONTAL

/////////////////////////7—;




5.

Relation between P, Q, Rand v, 6, ¢

P = é-¢ sin e

Q = Yycos @ sin ¢ + éCOS¢

De

R = $cos 6 cos ¢ - sin ¢.

MAJOR ASSUMPTIONS

A. Rigid Body.
B. Earth and atmosphere assumed fixed.
C. Constant mass.

D. xz - plane is a plane of symmetry.

IN THE BEGINNING.

3 [ﬂ+axv]

ﬁ"’I»-xﬁ]

|
1]
n
¥
3

&l
1]
&
'
—
Qa,
t

fod]
1]
[ae}
El
-
—
ool
[
b
€l
»
ol
[
(-



RIGHT-HAND SIDE (RHS) OF LINEAR FORCE EQ.

F = m g—z+5xv
-J'_- -
F = F F
X y
av _ -
x = U v
w = P Q
v = U v
w x V = QW-RV RU - PW
F, = m(U + Qv - RV]
Fy=m[V+RU-PW]

F=m[(;J+PV-QU]

PV - QU




10.

6

GIVES

H = PI
X X
H = I
y Q y
Hz = RI
y

Iz LARGEST
I = 0




11.

RHS OF MOMENT EQ.

G

0l

.

€l

g% + w x H
1— -+
G G
X Y
P Ix - R Ixz Q Iy
P Q
P Ix + QR (Iz - Iy) - (R + PQ) IXz

QI -PR(_ -1I) + (®*-rRH 1T
v z x XZ

R Iz + PQ (Iy - Ix) + (QR - P) Ixz

~

RT

-PI
xXZ




12. CONVENIENT GROUPINGS
A. LONGITUDINAL SET

"DRAG" T mnfU + QW - RV]

X

“"LIFT" Fz = mWw + PV - Q]

"PITCH" G
y

B. LATERAI~DIRECTIONAL SET

m[V + RU - PW]

"SIDEFORCE" Fy

"ROLL" G
X

"YAW! Gz

13. DEFINITIONS: LEFT-HAND SIDE (LHS)

AERO THRUST

"DRAG" F, = -D + T -
X X

"LIFT" F_ = -L + T +
z z

"PITCH' G, = n + My

U,a,a,Q,Ge U, ‘SRPM
"SIDEFORCE" F, = Y + 4 +
" " -
ROLL" G = RAN Ly
A G, = 77 + N,
——— ——
B5P,R,8 56, Sxpn

- 2 2 :
QIy-PR(Iz-Ix) + (P --R)IxZ

PIX+QR(IZ-Iy)—(R+PQ) Ixz

RIz+PQ(Iy—Ix)+(QR-P) Ixz



14, SMALL PERTURBATION THEORY

A,

B.

15. THE

let U = U+ a&U = U

etc.

THEN BY TAYLOR SERIES APPROXIMATION

D = D + .321_1 _a_D.a +
o) u Ja
8Tx aT
= + - +
Tx Ty Tl Y-
etc.

COMPLETE DRAG EQUATION

3D aD 3D
-[Do*m” 3 L
oa
aT BTX
+ T + —u + 8
Xo u aGRPM RPM

m [G + QW - RvV]




16. DRAG EQUATION IN STABILITY FARAMETER NOTATION
A. TFIRST DIVIDE BY m "FORCE/UNIT MASS"

B. DEFNE = 24 = pu
m Ju u
D Tx Dg .
-2+ B0 __° _ [D u + Da + Da + Dag
m m m u a a q-

C. TFOR STABILITY AND CONTROL PURPOSES

u+Dau+Duu+Dee=0

17. LONGITUDINAL EQ. (STABILITY PARAMETERS)
A. ASSUMPTIONS APPROPRIATE FOR SIMPLIFICATION YIELD:

1]
o

"DRAG" u + Du + Da + D.6
u a <]

+
~
[

)
™

Na)
~r
D o

"LIFT" -Lu - (1 +L:)a - La
u a a

"PITCH" -/ u - 22 - 7Za + o - 7 2

10



18. [LATERAL-DIRECTIONAL EQ (STABILITY PARAMETERS)
A. ASSUMPTIONS APPFROPRIATE FOR SIMPLIFICATION YIELD:

"SIDE

1" a - . + - -
FOR B YBB Yp¢ Y¢¢ (1 YI")P YGPGI’
I
1 "o o{ N - . XZ 52 'g - x
ROLL 36 + 9 %¢ T;:—r' Pr' = s (Sa + 2% (SI"
a r
" 1 - _ Xz - _ -
YAW" 7?88 T ) 7Zp¢ +r- X r 7?6a5a + 7?6r5r

19. LONGITUDINAL EQ (NON-DIMENSIONAL)
A. STABILITY PARAMETERS REWRTTTEN IN TERMS OF STABILITY DERIVATIVES

"DRAG" (2uV + C + 20, ) a+ Cpa+C o = 0
u (o] a Q

L e

"LIFT" —(.CL + 2CL ) u - (2uv + CL_V + CI_. Ja + (2uv - CL v)e = C - $
u (e} o a q 8

" 1] - - i 2 - =
PITCH -Cmuu (Cmév + Cma)u + (.lyV CmqV)e = C 5 $

Where

[o0]
-t

=
u - QSC

.

©
w
0

11




20. LATERAL-DIRECTIONAL EQ. (NON-DIMENSIONAL)

"SIDE "
i1 - -
FOR (2uv - Cy )8 (CY v+ CL Yo + (2u CY r
B P o] r
2 . -
WROLL" - C, B+(i v  =-C, V) ¢ - (i vV+C,)r=2¢C
ZB X I’p X2 Zr' 85
IIYAWU

SC B-(i V¥4+C e+t UHT-C =
nB XZ np 2z n

r Ng
Where

i, = *x L o= 2 d ()
Y pr3 20, ~at
i = ez -
XZ pr3 oSb
81
i o= 2
z 0Sb

12



LONGITUDINAL STATIC STABILITY

VOLUME I

CHAPTER

REVISED FEBRUARY 1977

3.1 DEFINITION OF LONGITU-
DINAL STATIC STABILITY

Static stability is the
reaction of a body to a disturbance
from equilibrium., To determine the
static stability of a body, the
body must be initially disturbed
from its equilibrium state. If
when disturbed from equilibrium,
the body returns to its original
equilibrium position, the body dis-
plays positive static stability or
is stable. If the body remains in
the disturbed position, the body
is said to be neutrally stable.
However, should the body, when dis-
turbed, continue to displace from
equilibrium, the body has negative
static stability or is unstable.

Longitudinal static stability
or "gust stability" of an aircraft
is determined similarly. If an
aircraft in equilibrium is momen-
tarily disturbed by a vertical gust,
the resulting change in angle of
attack causes changes in lift co-
efficients on the aircraft. (Ve-
locity is constant for this time
period.) The changes in lift
coefficicents produce additional
aerodynamic forces and moments in
this disturbed position. If the
aerodynamic forces and moments
created tend to return the air-
craft to its original undisturbed
condition, the aircraft possessses
positive static stability or is
stable. Should the aircraft re-
main in the disturbed position, it
possesses neutral stability. If the
forces and moments cause the air-
craft to diverge further from
equilibrium, the aircraft possesses
negative longitudinal static sta-
bility or is unstable.

® 3.2 ANALYSIS OF LONGITU-

DINAL STATIC STABILITY

Longitudinal static stability
is only a special case for the
total equations of motion of an
aircraft. Of the six equations of
motion, longitudinal static sta-
bility is concerned with only one,
the pitch equation, that equation
describing the aircraft's motion
about the y - axis.

Gy = qu - pr(Iz- Ix) + (pz--rz)lxz (3.1)
The fact that theory pertains to

an aircraft in straight, steady,
symmetrical flight with no unbal-
ance of forces or moments permits
longitudinal static stability motion
to be independent of the lateral and
directional equations of motion.
This is not an oversimplification
since most aircraft spend much of
the flight under symmetric equilib-
rium conditions. Furthermore the
disturbance required for stability
determination and the measure of

the aircraft's response takes place
about the y - axis or in the longi-
tudinal plane.

Since longitudinal static
stability is concerned with resul-
tant aircraft pitching moments
caused by momentary changes in
angle of attack and lift coeffi-
cients, the primary stability
derivatives become Cm, and Cmcy,-
The value of either derivative is
a direct indication of the longi-
tudinal static stability of the
particular aircraft.

To determine an expression
for the derivative, CmCL' an air-

3.1




craft in stabilized, equilibrium If an order of magnitude

flight with horizontal stabilizer check is made, some of the terms
control surface fixed will be can be logically eliminated because
analyzed. A moment equation will of their relative size. Cp can be
be determined from the forces and omitted since

moments acting on the aircraft.
Once this equation is nondimension- c

alized, in moment coefficient form, C'I‘ = Tg' = T‘(‘)’—O
the derivative with respect to Cg,

will be taken. This differential

4

eguation will be an expression for Macy is zero for a symmetrical

Cmc, and will relate directly to airfoil horizontal stabilizer

the aircraft's stability. Indi- section. Rewriting the simplified
vidual term contribution to sta- equation:

bility will in turn be analyzed.

A flight test relationship for ¥y

determining the stability of an air-

craft willgbe developed 1f/'ollowed Mo = NoA * GEg - Mac ¥ Me = NT['T (3.3)

by analysis of the aircraft with

It is convenient to ex s
a free control surface. 5 _co pres

equation 3.3 in nondimensional
coefficient form by dividing both

® 3.3 THE STABILITY EQUATION sides of the equation by qws c
wow
To derive the longitudinal
pitching moment equation, refer to M N X cz M
the aircraft in figure 3.1. Writ- Cg e - ; Z : - gc
ing the moment equation using the L w S v W LG
sign convention of pitchup being a
positive moment and assuming a Mg NTZT
small angle of attack a so that 3 s (3.4)
¢Cos a = 1 and sin a = a; WeS SWuS

FIGURE 3.1 N
(<:\ o z Ny

RELATIVE &

Winp /)
X
HORIZON
z
7+
MCG = waw + Cwa - Mac + Mf - NTZT + CThT - HacT (3.2)

3.2



Substituting the following coeffi-
cients in equation 3.4:

M
C, - __%Q__ total pitching moment
CG Ww coefficient
Mac wing aerodynamic
c = —=—— pitching moment
m S .3
ac %S  coefficient
Mg fuselage aerodynamic
¢, = 35 o pitch@ng moment co-~
£ WS  efficient
Nw
Cy = S wing aerodynamic nor-
Wow mal force coefficient
N
T . .

N, = .5 tail aerodynamic nor-
T TT mal force coefficient
Cw wing aerodynamic
Cc = g5 chordwise force co-

wowW efficient

Equation 3.4 may now be written:

Xw ZW
c = ¢, — + C.,— = ¢ +C
mCG Nc Cec mac mf
R
q.8 ¢ (3.5)

where ¢ and cy are used interchange-
ably to represent the mean aerody-
namic chord of the wing. To have
the tail term in terms of a coeffi-
cient, multiply and divide the term
by qpSq

Nl %rSp
qwswcu qTST

Substituting tail efficiency fac-

tor ng, = qT/qw and designating tail
volume coefficient Vy = 2.54/CuSy:

Equation (3.5) becomes:

- CNTanT (3.6)

Equation 3.6 is referred to as the
equilibrium equation in pitch. If
the magnitudes of the individual
terms in the above equaticn are
adjusted to the proper value, the
aircraft may be placed in eguilib-
rium flight where CmCG = 0.

Taking the derivative of equa-
tion 3.6 with respect to C; and
assuming that X, 2y, Vg, and nrg
do not vary with Cr,

dc dC
ch dCL c dCL c dCL
~— S
N
WING
dCmf dCNT
+ = == VN (3.7)
dCL dCL HT
FUSELAGE TAIL

Equation 3.7 is the stability equa-
tion and is related to the stability
derivative Cp, by the slope of the

l1ift curve, a.

dc dc
m m

2 . g3
da dCL

(3.8)

Equation 3.6 and equation 3.7
determine the two criteria neces-
sary for longitudinal stability:

1. The aircraft is balanced.
2. The aircraft is stable.
The first condition is satis-

fied if the pitching moment equa-
tion may be forced to Cpgg = 0 for

all useful positive values of Cy,.
This condition is achieved by

3.3




4

trimming the aircraft so that mo-
ments about the center of gravity
are zero (i.e., Mgg = 0).

The second condition is
satisfied if equation 3.7 or deCG/
dCy, has a negative value. From
figure 3.2 a negative value for
equation 3.7 is necessary if the
aircraft is to be stable. Shcaild
a gust cause an angle of attack
increase and a corresponding in-
crease in Cp, a negative CmCG should
be produced to return the aircraft
to equilibrium, or CMC 0. The
greater the slope or the negative
value, the more restoring moment
is generated for an increase in CL.
The slope or dC,/dCy, is a direct
measure of the "gust stability" of
the aircraft,

FIGURE 3.2

+CM“

NGSE UP

\ -
LESS STABLE A/C

NOSE DOWN

-C
LS

MORE STABLE A/C

If the aircraft is retrimmed
from one angle of attack to another,
the basic stability of the aircraft
or slope dCp/dC;, does not change.

Note figure 3.3.
FIGURE 3.3

(= <

ORIGINAL NEW TRIM
TRIM

34

However, if the cg is changed
or values of Xy, Zy, and Vy are
changed, the slope or stability of
the aircraft is changed. See equa-
tion 3.7. For no change in trim
tab setting, the stability curve
may shift as in figure 3.4.

FIGURE 3.4

AFT cg

<3

FORWARD
<9

3.4 EXAMINATION OF THE
WING, FUSELAGE, AND TAIL
CONTRIBUTION TO THE

STABILITY EQUATION

The Wing Contribution to
Stability:

The lift and drag are by defi-
nition always perpendicular and
parallel to the relative wind. It
is therefore inconvenient to use
these forces to obtain moments, for
their arms to the center of gravity
vary with angle of attack. For
this reason, all forces are re-
solved into normal and chordwise
forces whose axes remain fixed with
the aircraft and whose arms are
therefore constant:

).



FIGURE 3.5

RESULTANT
AERODYNAMIC
FORCE

X _BODY Axs
\

RELATIVE ;
WIND

Assuming the wing 1ift to be
the airplane lift and the angle of
attack of the wing to be the air-
plane's angle of attack, the follow-
ing relationship exists between the
normal and lift forces (figure 3.5):

N = Lcos a+ D sina (3.9)
C = Dcosa - L sina (3.10)

Therefore, the coefficients are
similarly related:

Cy = C ocos a + Cy sin a (3.11)

Cc = Cjcosa = C sin a (3.12)

The stability contributions, dCy/dCp
and dCc/dCy,, are obtained:

dC dc
N L da
= ——— cOS a4 = C — sin o
d
dCL dCL L CL
dCD
+ —— sin a + C cos a
dCL D dCL '
(3.13)
dC dc
C D
— 2 —= cos a - C_ —— sin a
dCL dCL D dCL
dCL
- EE; sin a CL ch cos a
(3.14)

Making an additional assumption that:

c 2
Cp = CDparasite * ime ondif

CDparasite is constant with change
in Cr:
Then éEE = 2L

dCL T 1R e

If the angles of attack are small
such that cos o« = 1.0 and sin a = a,
equations 3.13 and 3.14 become:

dcC
N 2 du>
— = l <+ C a —_— - —
dCL L <7TZR e ch
da
+ ¢ T (3.15)
L
EEQ - 2 c - CD _ig a
dCL TR e L dCL
dn
a-Cy dc, (3.16)

Examining the above equations
for relative magnitude,

Cp is on the order of 0.03
Cy, usually ranges from .2 to
2.0
a is small, = .2 radians
do .
is nearly constant at .2
dc .
L radians
2 is on the orde f .1
e r of .

Making these substitutions, equa-
tions 3.15 and 3.16 become

acy

= 1-.06+ ,06
dCL

= 1l.02 = 1.0 (3.17)




- = .1l CL - .012 - ,2 =~ .2CL

= - (.2+.1¢) (3.18)

By definition the coefficient
of moment about the aerodynamic cen-
ter is invariant with respect to
angle of attack. Therefore,

4Cm

dcCy, =0

Rewriting the wing contribution of
the stability equation 3.7,

dcm xw Zw
—— = L. (2+.1cC) (3.19)
ac, L
WING
STABILIZING

From figure 3.5 when o in-
creases, the normal force increases
and the chordwise force decreases.
Equation 3.19 shows the relative
magnitude of these changes. The
position of the cg above or below
the aerodynamic center (a.c.) has a
much smaller effect on stability
than does the position of the cg
ahead or behind the a.c. With the -
cg ahead of the a.c., the normal
force is stabilizing. From equa-
tion 3.19, the more forward the
cg location, the more stable the
aircraft. With the cg below the
a.c., the chordwise force is sta-
bilizing since this force decreases
as the angle of attack increases.

The further the cg is located below
the a.c., the more stable the
aircraft or the more negative the
value of dCp/dC;. The wing contri-
bution to stability depends on the
cg and a.c. relationship shown in
figure 3.6.

-

FIGURE 3.6
WING CONTRIBUTION TO STABILITY
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STABILIZING

For a stable wing contribution to
stability, the aircraft should be

designed with a high wing aft of

the center of gravity. —



Fighter type aircraft and

most low wing, large aircraft have
cg's very close to the top of the
mean aerodynamic chord. 2y is on

the order of .03. For these air-
craft, the chordwise force contri-
bution to stability can be neglected.
The wing contribution then becomes:

dc X
i . X (3.20)
[«
Lyine

The Flving Wing.

In order for a flying wing
to be a usable aircraft, it must
be balanced (fly in equilibrium at
a useful positive Cr) and be stable.
The problem may be analyzed as
follows:

FIGURE 3.7

\

RELATIVE WIND

For the wing in figure 3.7,
assuming that the chordwise force
acts through the cg, the equilibrium
equation in pitch may be written:

M., = NX - M

cG W ac (3.21)

Writing the equation in coefficient
form,

X

w
¢ = C,— - ¢ (3.22)
TG N e Tic

RW

For controls fixed, the stability
equation becomes,

- dc

=R (3.23)
dCL dCL ¢

Equations 3.22 apd 3.23 show that
the wing in figure 3.7, is balanced
and unstable. To make the wing
stabTe, or dCy,/dC; negative, the
center of gravity must be ahead of
the wing aerodynamic center. Mak-
ing this cg change, however, now
changes the signs in equation 3.21.
The equilibrium and stability equa-
tions become:

X
c = -¢ — - ¢C (3.24)
"ce CN ¢ Pac .
dc
m d X
chG - __CN v (3.25)
L ey e

The wing is now stable but unbal-
anced. The balanced condition is
possible with a positive Cmyce

Three methods of obtaining
a positive Cmac are:

1. Use a negative camber air-
foil section. The positive
Cmac will give a flying wing
that is stable and balanced
(figure 3.8).

FIGURE 3.8
NEGATIVE CAMBERED FLYING WING

SN
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This type of wing is not realistic
because of unsatisfactory dynamic
characteristics, small cg range,
and extremely low Cy, capability.

2. A reflexed airfoil section
reduces the effect of camber
by creating a download near
the trailing edge. Similar
results are possible with an
upward deflected flap on a
symmetrical airfoil,.

3. A symmetrical airfoil section
in combination with sweep and
wing tip washout (reduction
in angle of incidence at the
tip) will produce a positive
Cmac by virtue of the aero-
dynamic couple produced be-
tween the down loaded tips
and the normal lifting force.

FIGURE 3.9

NOSE UP
!

c"‘cg 0

Figure 3.9 shows idealized
Cm versus Cp, for various wings
cg L

in a control fixed position. Only
two of the wings are capable of
sustained flight.

The Fuselage Contribution to
Stability:

The fuselage contribution is
difficult to separate from the wing
terms because it is strongly in-
fluenced by interference from the
wing flow field. Wind tunnel tests
of the wing body combination are
used by airplane designers to obtain
information about the fuselage in-=
fluence on stability,.

A fuselage by itself is al-
most always destabilizing because
the center of pressure is usually

NOSE UP
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—-C 0
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FWD cg
SYMETRICAL SWEEPBACK SYMETRICAL
WASHOUT
4 UNSTABLE
/AFr <3
UNSTABLE _—

AFT cg /
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ahead of the center of gravity.

The magnitude of the destabilizing
effects of the fuselage requires
their consideration in the equilib-
rium and stability equations.

dc
m

——— = Positive quantit
dCLFus 4 Y

The Tail Contribution to
Stability:
From equation 3.7, the tail

contribution to stability was found
to be:

dc dCy

—n -—2L vonq

dc dc; H'T (3.26)
LTail

For small angles of attack, the
lift curve slope of the tail is
very nearly the same as the slope
of the normal force curve.

dCL dC

N
= B (3.27)
T 4o 441 dari1
Therefore:
CNT = A% (3.28)

An expression for aq in termms of Cg,

is required before solving for
dCNT/dCL-

FIGURE 3.10

TAIL ANGLE OF ATTACK

ar

From figure 3.10,

ap T e - iyt - e (3.29)

Substituting equation 3.29 into
3.28 and taking the derivative with
respect to Cp,, where a, = dCy,/da

dc
. Oy de
ar dc, dC

dCL CL
= ap [~ -9 1l
a, da ay (3.30)
upon factoring out l/ay,
d
._CF_T_.E fl_.dﬁ.‘ (3.31)
dCL a, k dul .

Substituting equation 3.3l into
3.26, the expression for the tail
contribution becomes,

dc
____P_l_ = - -a;r- (l - _d_e,> anT

dC a do
LTail v

(3.32)

The value of ar/ay 1s very nearly
constant. These values are usually
obtained from experimental data.

The tail volume coefficient,
Vg, is a term determined by the

geometry of the aircraft. To vary
this term is to redesign the air-
craft.

vy = % (3.33)

The further the tail is located
aft of the cg (increase ) or the

greater the tail surface area (Sp),
the greater the tail volume coeffi-
cient Vg which increases the tail
contribution to stability.
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The expression, ng, is the
ratio of the tail dynamic pressure
'a the wing dynamic pressure and
nr is greater than unity for a prop
aircraft and less than unity for a
jet. TFor power-off considerations,
e =1.0.

The term (1 - de¢/da) is an im-
portant factor in the stability
contribution of the tail., Large
positive values of de/da produce
destabilizing effects by reversing
the sign of the term (1 - de/da)
and consequently, the sign of dCy/
dCLTail‘

For example at high angles of
attack the F-104 experiences a
sudden increase in dc/da. The term
(1 - de¢/da) goes negative causing
the entire tail contribution to be
positive or destabilizing, causing
aircraft pitchup. The stability
of an aircraft is definitely in-
fluenced by the wing vortex system.
For this reason the downwash varia-
tion with angle of attack should
be evaluated in the wind tunnel.

The horizontal stabilizer
provides the necessary positive
stability contribution (negative
ACrp/dC[) to offset the negative sta-
bility of the wing and fuselage com-
bination and to make the entire
aircraft stable and balanced (figure
3.11).

FIGURE 3.1}

CONTRIBUTIONS TO STABILITY

3.10

The stability equation 3.7 may now
be written as,

dC X dC aT
_m - - Iy
dc, c dc, a, AT
Fus
de
(l‘ 5;} (3.33a)

The Power Contribution to
Stability:

The addition of a power plant
to the aircraft may have a decided
effect on the equilibrium as well
as the stability equations. The
overall effect may be guite compli-
cated. This section will be a
gualitative discussion of the power
effects. The actual end result as
to the power effects on trim and
stability should come from large
scale wind tunnel models or ac*tual
flight test.

The power effects on a pro-
peller-driven aircraft which in-
fluence the static longitudinal
stability cf the aircraft are:

effect - effect
from the thrust
along the pro-

1. Thrust force
on stability
force acting
peller axis.

2. Normal force effect - effect
on stability from a force nor-
mal to the thrust line and in
the plane of the propeller.

3. Indirect effects - power

plant effects on the stability
contribution of other parts
of the aircraft.




FIGURE 3.12
PROPELLER THRUST AND NORMAL FORCE

Fro

Writing the moment equation for the
power terms as:

N

MCG = TZT + prT

In coefficient form,

(3.34)

Cm = CT

i
cG <

+ Gy EI (3.35)
P c

The direct power effect on the air-
craft's stability equation is then:

dc i dc,, E_T.
dCL dCL c
power
dc
N
+ —E I (3.36)
dCL c

The sign of de/dCLpower then depends

on the sign of the derivatives dCNP/
dC;, and d4Ct/dCy,.

We shall first consider the dCy/dCy,
derivative. If speed varies at different
flight conditions with throttle position
held constant, then Cp varies in a
manner that can be represented by
dCt/dCy. The coefficient of thrust
for a reciprocating power plant varies
with C; and propeller efficiency.
Propeller efficiency which is avail-

able from propeller performance
estimates in manufacturer's data,
decreases with increase in velocity.
Coefficient of thrust variation with
Cr is nonlinear with the derivative
large at low speeds. The combina-
tion of these two variations approx-
imately linearize Cp versus Cp (fig-
ure 3.13). The sign of dCp/cCy is
positive,

FIGURE 3.13

COEFFICIENT OF THRUST CURVE RECIPROCATING
POWER PLANT WITH PROPELLER

b

<L

The derivative, dCn,./dCr, is
positive since the normal propeller
force increases linearly with the
local angle of attack cf the pro-
peller axis, afp.

The direct power effects are
then destabilizing if the cg is as

3.1




shown in figure 3.12, or where the
power plant is ahead and below the

cg.

The indirect power effects
must alsoc be considered in evaluat-
ing the overall stability contri-
bution of the propeller power plant.
No attempt will be made to deter-
mine their guantitative magnitudes;
however, their general influence on
the aircraft's stability and trim
condition can be great.

l. 1Increase of Angle of Downwash,
[

Since the normal force on the
propeller increases with angle of
attack under powered flight, the
slipstream is deflected downward
netting an increase downwash at the
tail, The downwash in the slip-
stream will increase more rapidly
with angle of attack than the down-
wash outside the slipstream. .The
derivative de/de has a positive in-
crease with power. The term (1 -
de/da} in equation 3,32 is reduced
causing the tail trim contribution
to be less negative or less stable
than the power-off situation.

2. Increase of np = (ap/ay) :

The dynamic pressure, Ap s of

the tail is increased by the slip-
stream and np is greater than unity.
From equation 3.32, the increase of
np Wwith addition of a power plant
increases the tail contribution to
stability. However, if the tail is
carrying a download at trim and if
it should move into a high velocity
region of the slipstream at higher
Cr, more of a noseup moment would
be present as Cr, increased, causing
an obvious destablizing effect,

Both slipstream effects men-
tioned above may be reduced by lo-

3.12

cating the horizontal stabilizer
high on the tail and out of the
slipstream at operating anglas of
attack.

Power Effects on Jet Air-
craft,

The magnitude of the power
effects on jet-powered aircraft
are generally smaller than on pro-
peller-driven aircraft. By assum-
ing that jet engine thrust does not
change with velocity or angle of
attack, and by assuming constant
power settings, smaller power effects
would be expected than with a simi-
lar reciprocating engine aircraft,

There are three major contri-
butions of a jet engine to the
equilibrium static longitudinal
stability of the aircraft. These
are the direct thrust effects, the
normal force effects at the air duct
inlet, and the indirect effect of
the induced flow at the tail.

The thrust and normal force
contribution may be determined from
figure 3.13a.

FIGURE 3.130
TEST THRUST AND NORMAL FORCE

JET THRUST AND NORMAL FORCE

Meg = Tip + NpXp (3.38)
or
T X
C = e Z + < (3.39)
mCG qSc T cNT c (



With the aircraft in unaccelerated
flight, the dynamic pressure is a
function of lift coefficient.
q = o 40)
= 3.
CLS (

Therefore,

N

T Z1 X
o - = — (C + — (3.41)
m(.‘G W ¢ L CNT c

If thrust is considered indepen-
dent of speed,* then

dc
_CE“.‘ - L .Z_Z + __..}11 }.r_. (3.42)
ch W ¢ dCL ¢

The thrust contribution to stability
then depends on whether the thrust
line is above or below the cg.
Locating the engine below the cg
causes a destablizing influence,

and above the cg a stabilizing
influence.

The normal force contribution
depends on the sign of the deriva-
tive dCNT/dCL. The normal force
Np is created at the air-duct inlet
to the turbojet unit., This force
is created as a result of the momen-
tum change of the free stream which
pends to flow along the duct axis.
The magnitude of the force is a
function of the mass airflow rate,
W5, and the angle oap between the
local flow at the duct entrance
and the duct axis.

_ Wa
Np =gV o (3.43)

With an increase in agq, Np will in-
crease, causing dCNT/dCL to be posi-
tive. The normal force contribution
will be destabilizing if the inlet
duct is ahead of the center of
gravity. The magnitude of the de-
stabilizing moment will depend on

* For aircraft which have large thrust variation with airspeed, the
pitching moment coefficient must be calculated for different
values of the aircraft's lift coefficient,

the distance the inlet duct is ahead
of the center of gravity.

For a jet engine to definitely
contribute to positive longitudinal
$tability, (dCp/dCi negative), the
jet engine would be located abcve
and behind the center of gravity.

The indirect contribution of
the jet unit to longitudinal sta-
bility is the effect of the jet
induced downwash at the horizontal
tail. This applies to the situation
where the jet exhaust passes under
or over the horizontal tail surface.
The jet exhaust as it discharges
from the tail pipe spreads outward.
Turbulent mixing causes outer air
to be drawn in towards the exhaust
area. Downwash at the tail is di-
rectly affected. With the exhaust
below the tail surface, the downwash
is increased, causing the tail term
to be less stabilizing.

From the above discussion it
can be seen that several factors
are important in deciding the power
effect on stability. Each aircraft
must be examined individually. This
is the reason that aircraft are
tested for stability in several con-
figqurations and at different power
settings.

3.5 THE NEUTRAL POINT

The stick-fixed neutral point
is defined as the center of gravity
position at which the aircraft dis-
plays neutral stability or where
de/dCL = 0,

The symbol h is used for cen-
ter of gravity position where,

h = —— (3.44)
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The stability equation for the
powerless aircraft is:

i S T W SO
dc c dc, a_ H'T da
L w
Fus

(3.33a)
Looking at the relationship between
¢g and a.c., in figure 3.14,

FIGURE 3.14
cg AND ac RELATIONSHIP

(3.46)

Substituting equation 3.46 into
equation 3.45 and setting dCp/dCy
equal to zero,

i‘-“—“—1 - 0 - h - i(_é_c_ +—_-d_cl.
dCL c dCL
Fus
-3 1 - 8¢
a, Va"r da] (3.47)

Solving for h which is hy,

dc a,

h = 8% _ m I . de
n c dC + a anT 1 da
L w

Fus

(3.48)

Substituting equatien 3.48 back
into equation 3.47, the stick-
fixed stability derivative in terms
of cg positions becomes,

3.14

dc_
EE; = h-h (3.49)

The stick-fixed static stability
is equal to the distance between
the cg position and the neutral
point in percent of the mean aero-
dynamic chord. "Static Margin"
refers to the same distance but

is positive in sign for a stable
aircraft.

"Static Margin" = h_ - h (3.50)

n

It is the test'pilot's responsibil-
ity to evaluate the aircraft's
handling qualities and to determine
the acceptable static margin for
the aircraft.

® 3.6 ELEVATOR POWER

As previously mentioned, for
an aircraft to be a usable flylng
machine, it must possess stability
and must be capable of being placed
in equilibrium (Cp = 0) throughout

the useful C1, range (balanced).

For trimmed or equilibrium
flight, Cmcg must be zero. Some

means must be available for balanc-
ing the various terms in the moment
coefficient of equation 3.51,

xw Z
C = - + C w = C
mCG CN c ¢ c Mac
+ C - v
Mg T 1% 'wr (3.51)

BEq 3.51 is obtained by substituting
Eq 3.28 into 3.6.

Several possibilities are available.
The center of gravity could be
moved fore and aft or up and down
thus changing Xy/C or Zy/C. How-
ever, this would not only affect
the equilibrium lift coefficient
but would also change the stability
dCp/dCy in the stability equation
3.52. This is undesirable.



dc_ _ o X, dcC zw . dc_
ac; dc, N ch c dcl'ms
aT de
'a—vﬂ"r 1-4 (3.52)

Eq 3.52 is obtalned by substituti
Eq 3.31 into 3. 4 rruting

The pitching moment coefficient
about the aerodynamic center could
be changed by effectively changing
the camber of the wing by using
trailing edge flaps as is done in
flying wing vehicles, On the con=-
ventional tail-to~-the-rear aircraft,
trailing edge wing flaps are in-
effective in trimming the pitching
moment coefficient to zero.

The remaining solution is to
change the angle of attack of the
horizontal stabilizer to achieve a
Cmcg = 0 without a change to the

basic aircraft stability. The con=-
trol means is either an elevator

on the stabilizer or an all moving
stabilizer (called a slab). The
slab is used in most high speed air-
craft and is the most powerful means
of longitudinal control.

Movement of the slab or ele-
vator changes the effective angle
of attack of the horizontal sta-
bilizer and, consequently, the lift
on the horizontal tail. This in
turn changes the moment about the
center of gravity due to the hori-
zontal tail. It is of interest to
know the amount of pitching moment
change associated with a degree of
elevator deflection. This may be
determined by differentiating equa-
tion 3.51 with respect to §e.

ac d
__m -aVvn, —-—/—
i M 45, (3.53)

This change in pitching moment co-
efficient with respect to elevator
deflection Cmde is referred to as
"elevator power." It indicates the
capability of the elevator in pro-
ducing mcments about the center of
gravity.

The term dap/dé, in eguation
3.53 is termed elewvator erff=ctive-
ness and is given the shorthand
notation r. The elevator effrctivg-
ness may be consicered as the equiva-
lent change in effective taji plara
angle of attack’ per unit change in
elevator deflection. The relzaticn-
ship between elevator =2ffeciiveness
t and the effective angle of attack
oflthe stabilizer is sezn 1 figusw
3.15.

FIGURE 3.15

CHANGE IN EFFECTIVE ANGLE OF ATTACK
WITH ELEVATOR DEFLECTION
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As seen, elevator effectivenes:z 1is

a design parameter and is determined
from wind tunnel tests, Elevator
effectiveness is a negative number
for all tail to the rear aircraft.
The values range from zero tc the
limiting case of the all moving
stabilizer (slab) where 1 eguals
(-1). The tail angle of attack
would change plus one degree for
every minus degree the slab moves,
For the elevator stabilizer combina-
tion, the elevator effectiveness is
a function of the ratio of uverall
elevator area to the entire hori-
zontal tail area.

® 3.7 STABILITY CURVES

Figure 3.16 is a wind tunnel
plot of Cy versus Cp for an aircraft

tested under two cg positions and
two elevator positions.

3.18







dc d X dc. z dcC
-m o N w,  _Cw,_ _@o
dC dC. ¢ dC. ¢ d

L L 4 chs

aT de
'a—vH”T -4 (3.52)

Eq 3.52 is obtalned by substituti
Eq 3.31 into 3.7. Y substifuting

The pitching moment coefficient
about the aerodynamic center could
be changed by effectively changing
the camber cof the wing by using
trailing edge flaps as is done in
flying wing vehicles. On the con-
ventional tail-to-the-rear aircraft,
trailing edge wing flaps are in-
effective in trimming the pitching
moment coefficient to zero.

The remaining solution is to
change the angle of attack of the
horizontal stabilizer to achieve a
Cmcg = 0 without a change to the

basic aircraft stability. The con-
trol means is either an elevator

on the stabilizer or an all moving
stabilizer (called a slab). The
slab is used in most high speed air-
craft and is the most powerful means
of longitudinal control.

Movement of the slab or ele-
vator changes the effective angle
of attack of the horizontal sta-
bilizer and, consequently, the 1lift
on the horizontal tail. This in
turn changes the moment about the
center of gravity due to the hori-
zontal tail. It is of interest to
know the amount of pitching moment
change associated with a degree of
elevator deflection. This may be
determined by differentiating equa-
tion 3.51 with respect to éq.

dc_ d
T T T
e ée e

(3.53)

This change in pitching moment co-
efficient with respect to elevator
deflection Cmée is referred to as
"elevator power." It indicates the
capability of the elevator in pro-
ducing moments about the center of
gravity.

The term dap/dég in equation
3.53 is termed elewvator erffzctive-
ness and is given the shorthand
notation t. The elevatur effective~-
ness may be considered as the equiva-~
lent change in effective taiji plara
angle of attack per unit change in
elevator deflection., The relzaticn-~
ship between elevator =ffeciiveness
T and the effective angle of attack
gflthe stabilizer is sezn 1+ figusw

.15,

FIGURE 3.15

CHANGE IN EFFECTIVE ANGLE OF ATTACK
WITH ELEVATOR DEFLEZCTION
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As seen, elevator effectivenesz is

a design parameter and is determined
from wind tunnel tests. Elevator
effectiveness is a negative number
for all tail to the rear aircraft.
The values range from zero to the
limiting case of the all moving
stabilizer (slab) where 1 egquals
{-1). The tail angle of attack
would change plus one degree for
every minus degree the slab moves.
For the elevator stabilizer combina-
tion, the elevator effectiveness is
a function of the ratio of uoverall
elevator area to the entire hori-
zontal tail area.

® 3.7 STABILITY CURVES

Figure 3.16 is a wind tunnel
plot of Cy versus C;, for an aircraft

tested under two cg positions and
two elevator positions.
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FIGURE 3.16
cg AND 8, YARIATION ON STABILITY

_1 nose up

Assuming the elevator effectiveness
and the elevator power to be con-
stant, then equal elevator deflec-
tions produce equal moments about
the cg. Points A and B represent
the same elevator deflection corre-
sponding to the Cng needed to main-

tain equilibrium. The pilot selects
elevator deflection of 10 degrees.
In the aft cg condition, the air-
craft will fly in equilibrium at
point B. If the cg is moved forward
with no change to the elevator de-
flection, the equilibrium point is
now at A or at a new Cj,. Note the
increase in the stability of the
aircraft (greater negative slope
dCn/4CL) .

If the pilot desires to fly
at a lower C; or at A and not change
the cg, he does so by deflecting
the elevator to 5 degrees. The sta-
bility level of the aircraft has
not changed (same slope).

A cross plot of figure 3.16
is elevator deflection versus Cy,
for Cp = 0. This is shown in fig-
ure 3.17. The slopes of the cg
curves are indicative of the air-
craft's stability.
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® 3.8 FLIGHT TEST

RELATIONSHIP

The stability equation 3.52
derived previously pertains to
theoretical applications and text
book solutions. The equation has
no use in flight testing. There
is no aircraft instrumentation
which will measure the change in
pitching moment coefficient with
change in lift coefficient or angle
of attack. Therefore an expression
involving parameters easily measur-
able in flight is required. This
expression should relate directly
to the stick-fixed longitudinal
statig stability dCp/dC of the
aircraft,

The external moment acting
longitudinally on an aircraft is:

M = f(a, a, q, v, 68) (3.54)

Assuming further that the aircraft
is in equilibrium and in unacceler-
ated flight, then

M = f(a, Ge) (3.55)



Therefore,

M oM
oM 5. 00t o5 Aée (3.56)
e
and
c =c 4+ c¢c & =0 (3.57)
m m m e
a [}
e
where Aa = a - ag = @

The elevator deflection required
to maintain equilibrium is,

(3.58)

Taking the derivative of §g with
respect to Cy,

dC dcC
_o da _a
dég  da 4G 4G (3.59)
dCL Cm C
s ms
e e

In terms of the static margin, the
flight test relationship is,

(3.60)

The amount of elevator required to
fly at equilibrium varies directly

as the amount of static stick-fixed
stability and inversely as the amount
of elevator power.

® 3.9 LIMITATION TO DEGREX

OF STABILITY

The degree of stability toler-
able in an aircraft is determined
by the physical limits of the longi-
tudinal control., The elevator power
and amount of elevator deflection
is fixed once the aircraft has been
designed. If the relationship be-
tween &5 reguired to maintain the
aircraft in equilibrium flight and
Cr, is linear, then the elevator
deflection required to reach any
Cr, is,

ds

e
- C (3.61)
eZero Lift dCL L

6e = § +

The elevator stop determines
the absolute limit of the elevator
deflection available, Similarly,
the elevator must be capable of
bringing the aircraft into equilib-
rium at CLMax'

Recalling Equation 3.59

dé - dc
_e . L (3.59)
¢, a

Substituting equation 3.39 into
3.61 and solving for de/dCLM

; ax
corresponding to cIﬂax

: -
4 (e sero pase eumic] c
dC C m

lﬂax LM&X s e

(3.63)

Given a maximum Cj, required for
landing approach, equation 3.63
represents the maximum stability
possible, or defines the most for-
ward c¢cg movement., A cg forward of
this point prevents obtaining maxi-
mum Cp, with limit elevator.
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If a pilot were to maintain
the CLMax for the approach, the

value of dCp/dCp corresponding to
this CLMax would be satisfactory.

However, as is the case, the pilot
desires additional Cp, to maneuver
as in flaring the aircraft. Addi-
tional elevator is required. This
requirement then dictates a daCm/
chMax less than the value required

for CLMax only.

In addition to maneuvering
the aircraft in the landing flare,
the pilot must adjust for ground
effect. The ground imposes a
boundary condition which affects
the downwash associated with the
lifting action of the wing. This
ground interference places the hori-
zontal stabilizer at a reduced
angle of attack. . The equilibrium
condition at the desired C1 is dis-
turbed. To maintain the desired
Ci,, the pilot must increase 85 to
obtain the original tail angle of
attack. The maximum stability dCp/
dCt, must be further reduced to
obtain additional §eg to counteract
the reduction in downwash.

The three conditions that
limit the amount of static longi-
tudinal stability or most forward
cg position are:

a. The ability to land at high
Cr, in ground effect,

b. The ability to maneuver at
landing Cp, (flare capability).

c. The total elevator deflection
available.

Figure 3.17A illustrates the limita-
tions in dcm/chMax'

3.10 STICK-FREE STABILITY

The name stick~free stability
comes from the era of reversible
control systems and is that varia-
tion related to the longitudinal
stability which an aircraft would

3.18

possess if the longitudinal control =
surface were left free to float in

the slip stream. The contrel force
variation with a change in airspeed

is a measure of this stability. -

If an airplane had an elevator
that would float in the slip stream
when the controls were free, then
the change in the dynamic pressure .
pattern of the stabilizer would
cause a change in the stability
level of the airplane. The change
in the stability contribution of the
tail would be manifested by the float-
ing characteristics of the elevator.
Thus, the stick-free stability would
depend upon the elevator hinge mo-
ments, contrel friction, or any
device that would affect the moment
of the elevator.

An airplane with an irrevers-
ible control system has very little
tendency for its elevator to float.
Yet the control forces presented to
the pilect during flight, even though
artificially produced, appear to be
the effects of having a free ele-
vator. If the control feel system
can be altered artifically, then
the pilot will see only good hand-
ling qualities and be able to fly

FIGURE 3.17a
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what would normally be an unsatis-
factory flying machine.

Stick-free stability can be
analyzed by considering the effect
of freeing the elevator of a tail-
to-the-rear aircraft with a revers-
ible control system. In this case
the stick free stability would be
indicated by the stick forces re-
gquired to maintain the airplane in
equilibrium at some speed other
than trim.

The change in stability due
to freeing the elevator, is a func-
tion of the floating characteristics
of the elevator. The floating char-
acteristics depend upon the ele-
vator hinge moments which depend
upon the change in pressure distri-
bution over the elevator associated
with changes in elevator deflection
and tail angle of attack.

The analysis will look at
the effect that pressure distri-
bution has on the elevator hinge
moments, the floating character-
istics of the elevator, and then
the effects of freeing the elevator.

For a standard stable tail to
the rear airplane, the pressure dis-
tribution would produce a downward
load on the tail.

FIGURE 3.18
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When the elevator is deflected the
pressure distribution is changed.

FIGURE 3.19
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When the stabilizer angle of attack
is changed the pressure distribution
is also changed.

FIGURE 3.20
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When the pressure distribution is
changed, the hinge mcments are
changed. 1In order to deflect the
elevator, the pilot had to apply

a force to the stick and create a
moment about the elevator hinge.

The elevator hinge moment the pilot
applied is now balanced by a moment
caused by the pressure distribution
on the control surface, and the
elevator remains in the deflected
position.

The pilot normally pulls back
on the stick in order to produce
a pitchup moment on the airplane,
The hinge moment prcduced tends to
move the control such that a posi-
tive moment on the airplane results,
Therefore, the hinge moment is called
positive. The pilot applies a posi-
tive moment to move the elevator.
The pressure distribution produces
a negative moment that opposes that
of the pilot.

A plot of the pilot's hinge
moment to deflect the elevator
would be:

FIGURE 3.21
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The hinge moment produced by the
pressure distribution would be as
shown in figure 3.24,

FIGURE 3.22 ‘ He FLOAT

(PRESSURE DISTRIBUTION
PRODUCED)
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When the stabilizer angle of attack
(ap) is changed, the pilot must
produce a control force in order to
keep the elevator from floating in
the slip stream.

Normally as the angle of
attack is increased the elevator
would tend to float up and the
pilot would have to apply a negative
push force in order to keep the
~stick from moving.

The hinge moment produced by
the pilot to maintain trim deflec-
tion would be:

FIGURE 3.23
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The hinge moment produced by the
pressure distribution to float the
elevator would be as shown in fig-
ure 3.22 .

FIGURE 3.24
He

If we consider the moments
produced by the pressure distribu-
tion on the elevator only, then we
could analyze the floating char-
acteristics of the elevator.

The hinge moments can be put
in coefficient form in much the same
manner as the airplane's aerody-
namic moments. The Hg Restore Slope
due to elevator deflection in co-
efficient form would be:

aC
-36—:- Restore = Ché (3.64)

The Hepjoat Slope due to angle of

attack change in coefficient form
would be:

3 .
-3'- Float = C

da h (3.65)

e a

Examining a floating elevator, it
is seen that the total hinge moment
is a function of elevator deflec-
tion, angle of attack, and mass
distribution.



H, = f(ée, Ty W) (3.66)

If the elevator is held at zero
elevator deflection and zero angle
of attack .there may be some residual
aerodynamic hinge moment Chg. The
total hinge moment where W = weight
of the elevator would be:

a W X

¢ = ¢C + T + § + —= =
h ho Cha C’h6 e q5 ¢
(3.67)

The weight effect is usually
eliminated by mass balancing the
elevator. Proper design of a sym-
metrical airfoil will cause Ch, to
be negligible.

When the elevator assumes its
equilibrium position the total
hinge moments will be zero and solv-
ing for the elevator deflection at
this floating position.

8 ¢ o

e (3.68)
Float h

The stability of the aircraft with
the elevator free is going to be
affected by this floating position.

If the pilot desires to hold
a new angle of attack from trim, he
will have to deflect the elevator
from this floating position to the
position desired.

The floating position will
greatly affect the forces the pilot
is required to use. If the ratio
Ch,/Chs can be adjusted, then the
forces the pilot is required to use
can be controlled.

If Ch,/Chs is small, then the
elevator will not float very far and
the stick-free stability character-
istics will be much the same as
those with the stick-fixed. But Chg
must be small or the stick forces

required to hold deflection will be
unreasonable. The values of Ch, and
Chg can be controlled by aercdynamic
balance. Types of aerodynamic bal-

ancing will be covered in a later
section,

FIGURE 3.25
ELEYATOR FLOAT POSITION

o
0
ol
ORIGINAL - FO<,\“°

RELATIVE
WIND ZERO

/ﬂ{'

ATY €
ReL WinO

DEFLECTION

® 3.1 STICK-FREE STABILITY

EQUATIONS

Stick free stability may be
considered the summation of the
stick-fixed stability and the con-
tribution to stability of freeing
the elevator.

dc dC
m m

L

dC dcC

LStick-Free Stick-Fixed

dcC
m

T

Freeing Elevator
{3.69)

Solving first for the effect to
stability of freeing the elevator,

de dC dé dé

. - _& . ¢ e
d ds dCL mg dCL
Free Elev. € e
(3.70)

The stability contribution of the
free elevator depends upon the
elevator flcating position. Equa-
tion 3.68 relates this position.

§ - - =2

€ ioat C, T (3.68)
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Substituting for ap from equation 3.29,

G

§ = - = (a, -1 +1i -¢)
®Float Ch6 v v T

(3.72)

Taking the derivative of equation
3.72 with respect to Cp,

de
C l1--
B e ( dq (3.73)
dcy G %

$

Subst{tuting the expression for elevator
power, Eq 3.74 and Eq 3.73 above into
Eq 3.70 gives Eq 3.75.

C - .
mg a TV n, (3.74)

d_crﬂ =..8_T.Vn l_d_": Cha

dc a, ( 'T"')
Free

Elevator

(3.75)

Substituting equation 3.75 and equa-

tion 3.33a (dcm/dCLFixed) into equa-

tion 3.69, the stick-free stability
becomes

dcC X dcC
m = _W+—_m_

dCL C dCL
Stick Free Fus

a !

- —I-V n,1l- gs}(l -1 ——2’
a

w

(3.76)

The difference between stick-fixed
and stick-free stability is the
multiplier in equation 3.76, (1 -

T Cha/chs)r called the "free ele-
vator factor" and which is desig-
nated F. The magnitude and siqn of

3.22

F depends on the relative magnitudes
of t and the ratio of Cp_ /Ch¢. An
elevator with only slight floating
tendency has a small Chy/Chg giving
a value of F around unity. The
stick fixed and stick free stability
are practically the same. If the
elevator has a large floating ten-
dency (ratio of Chu/chs large), the
stability contribution of the hori-
zontal tail is reduced materially
(dcm/dCLFree is less negative).

For instance, a ratio of Ch,/Chg =
-2 and a t of ~-,5, the floating
elevator can obviate the whole tail
contribution to stability. Gen-
erally, freeing the elevator causes
a destablizing effect. With ele-
vator free to float, the aircraft
is less stable.

The stick-free neutral point,
hnp, is that cg position at which
de/dCLFree is zero. Continuing

as in the stick-fixed case, the
stick-free neutral point is,

X dC a, !
T i de |
h' =3¢ - B4+ = v, 1-S%Sip
n c dCLFus a, HT \ da,
(3.77)
and
dc
T m a h-hr'l (3.78)
LFree

The stick-free static margin is
defined as,

Static Margin = h; -h (2,79

®3.12 STICK-FREE FLIGHT

TEST RELATIONSHIP

As was done for stick-fixed
stability, a flight test relation-—
ship is required that will relate
measureable flight test parameters
with the stick-free stability of

i



the aircraft dcm/dCLFree' This

relationship may be developed with
reference to figure 3.26.

FIGURE 3.26
ELEVATOR-STICK GEARING
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(PILOT) PRESSURE)
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The pilot holds a stick de-
flected with a stick force Fg. The
control system transmits the moment
from the pilot through the gearing
to the elevator., The elevator de-
flects and the aerodynamic pressure
produces a hinge moment at the ele-
vator that exactly balances the
moment produced by the pilot with
force Fg.

Fsz = - G'H (3.80)

e

If the length ¢ is included with
the gearing, the stick force becomes,

F ='-GH

s e (3.81)

The hinge moment He may be written,

RN XN

(3.82)

Equation 3.8l then becomes,
Fs = -GCh qSece (3.83)

Substituting

+ 4§
Ch = Ch +Ch c._r + Chs 6e Ch5 T
(o] GT e T
(3.84)

where ChéTéT represents the tab

contribution for an elevator with
tab

where
dée
§ = 5 s — C
e € ero 1ift dCL L (3.61)
G = oo, - i, 4 iT - E (3.29)
Equation 3.83 may be written,
A
F_= "= G5 clq
8 ee
B
-~ —— —
(cho + cha (aOL - iw + iT) + (Ch Ge)
) e !zero
Lifec
C.C
L hcse ac
T %, o - c_ ac, )
T Ge Free
{(3.87)

Rewriting equation 3.87 with the
above substitutions,

Ll

ée de
Fg = A B+ G Sp- — ac )
6T Bs LFree
e
(3.88)

Writing equation 3.88 as a function
of airspeed and substituting for un-
accelerated flight, Cr,g = W/S and

using equivalent airspeed, V.,
Fo= 1/20V 7 AGB+C &)
s oe s T

T




Simplifying equation 3.89 by com-
bining constant terms,

F = RV +K (3.90)

K] contains ép which determines trim
speed. K contains dCpn/dCLp .-

Equation 3.90 gives a relationship
between an inflight measurement of
stick force gradient and stick free
stability. The equation is plotted
in figure 3.27.

FIGURE 3.27
STICK FORCE VERSUS AIRSPEED
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The plot is made up of a constant
force springing from the stability
term plus a variable force propor-
ticnal to the velocity squared,
introduced through some constants
and the tab term CthéT. Equation

3.90 introduces an interesting fact
that the stick force variation with
airspeed is apparently dependent
on the first term only and indepen-
dent in general of the stability
level. That is, the slope of the
curve Fg versus V is not a direct
func¢tion of dcm/chFree’ If the

derivative of equation 3.89 is
taken with respect to V, the second
term containing the stability drops
out.

dF
S
T P VLA %, o1 (3.91)
T

However, drg/dV may be made
a function of the stability term
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using another approach. The tab
setting &7 in eguation 3.89 should

be adjusted to obtain Fg = 0. This
is 67 for trim velocity, i,e.,
de
8 * Ve I )
s Free (3.92)

This value of 6TFS = 0 is then sub-
stituted into equation 3.91 so that,

dF dc
m

S
£ (VTrim’ dc
Free

) (3.93)
VTrim

Thus it appears that if an
aircraft is flown at least two cg lo-
cations and dFg/dVryjg through the
same trim speed each time is de-
termined, then one could extrapoclate
or interpolate to determine the
stick-free neutral point hp. Un-

fortunately, if there is a signifi-

cant amount of friction in the control

system, it is impossible to precisely
determine this trim speed. 1In order
to investigate briefly the effects

of friction on the longitudinal con-
trel system, suppose that the air-
craft represented in figure 2.28 is
perfectly trimmed at vV} (i.e., 3o =
ey and $p = dTl). If the airspeed

is decreased or increased with no
change to the trim setting, the
friction in the control system will

FIGURE 3.28
CONTROL SYSTEM FRICTION
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prevent the elevator from returning
all the way back to de; when the

controls are released. The aircraft
will return only to V; or V3. With
the trim tab at §7y, the aircraft

is content-to fly at any speed be-
tween V3 and V3. The more friction
that exists in the system, the wider
this speed range becomes.

Therefore, if there is a
significant amount of friction in
the control system, it becomes im-
possible to say that there is one
exact speed for which the aircraft
is trimmed. Equation 3,93 then,
is something less than perfect for
predicting the stick-free neutral
point of an aircraft. To reduce
the undesirable effect of friction
in the control system, a different
approach is made to equation 3.88.

If equation 3.88 is divided
by the dynamic pressure g, then,
8 ’ dc

AaG

Fs/q = A(B + Ch GT) - C ac
[ m

T ) LFree

e
(3.94)

Differentiating with respect to Cy,

dF /q hé dc
S = - € m (3.95)
dCL Cm dCL
[ Free
e
or
dF /q {dC
—Ss a f |0 (3.96)
dCL d
Free

Trim velocity is now eliminated

from consideration, and the pre-
diction of stick-free neutral point
hﬁ is more exact. A plot of dFg/q/
dCy;, versus cg position may be extrap-
olated to obtain hp.

® 3.13 APPARENT STICK-FREX

STABILITY

Speed stability or stick force
gradient dFg/dV in most cases does
not reflect the actual stick-free
stability dcm/dCLFrea of an aircraft.
In fact this apparent stability
dFg5/dV may be gquite different from
the actual stability of the air-
craft, Where the actual stability
of the aircraft may be marginal
(de/dCLFree small), or even un-
stable (dcm/chFree positive), the
apparent stability dFg/dV may be
such as to make the aircraft quite
acceptable. 1In flight, the test
pilot feels and evaluates the appar-
ent stability of the aircraft and
not the actual stability dcm/chFree'

The apparent stability dFg/dv
is affected by:

1. Changes in dcm/dCLFree
2. Aerodynamic balancing
3. Downsprings and/or bob weights.

The apparent stability or
the stick force gradient through a
given trim speed increases if dCp/
dCLFree is made more negative. The

constant K2 of equation 3.90 is

made more positive and in order for
the stick force curve to continue

to pass through the desired trim
speed, a more positive tab selecticn
is required. An aircraft operating
at a certain cg with a tab setting
éTl is shown on figure 3.29, line 1.

FIGURE 3.29
EFFECT ON APPARENT STABILITY
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If de/dCLFree is increased by mov-

ing the cg forward, K2, which is a
function of de/dCLFree in equation

3.89 becomes more positive or in-
creases. The new equation becomes,

Fo= K,V 4K (3.97)

This equation plots as line 2 in
figure 5.7, The aircraft with no
change in tab setting dT operates
on line 2 and is trimmed to V2.
Stick forces at all airspeeds have
increased. At this juncture, al-
though the actual stability dCp/
dULérae has increased, there has

been no effect on the stick force
4:r rdrent or apparent stability,
{the slopes of line 1 and line 2

being the same,) So as to retrim
. lihe original trim airspeed Vi,
th. pilot applies additional nose
upt fsboto $p,. The aircraft is

now operating in line 3. The stick
fo-ree gradient through Vi has in-
creased because of an increase in
the Ky term in eguation 3.89, The
arcarent stability dFg/dV has in-

The same effect on apparent
stability as cg movement may be
obtained by means of aerodynamic
balancing. This is a design means
ot controlling the hinge moment co-
2fficients, Ch, and Chg. The pri-
mary reason for aerodynamic balanc-
ing is to increase or reduce the
hinge mowments and, in turn, the
control stick forces. Changing Chg,
artects the stick forces as seen
1n equation 3.89, 1In addition to
the influence on hinge moments,
acrodynamic balancing may very well
af fect the real and apparent sta-
bility of the aircraft. Assuming
that the restoring hinge moment
coefficient Chg is increased by an
appropriate aerodynamic balanced
control surface, the ratio of Ch,/
Chg 1n stability equation 3.76
is decreased.
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dcC X dC
—_—m ¥, W
dC c dacC
LLFree LFus
C
a h
T de a
T e, W'r <l'_da><1 T E_> (3.76)
W h6

The combined increase in dCp/dCy,

and Chg, increases the K2 term Free
in eguation 3.90 since
C
h dC
W $ m
KZ = - A 3T 3c (3.99)
m L
) Free

Figure 3.29 shows the effect of
increased K3. The apparent sta-
bility is not affected by the in-
crease in Ky wiile the aircraft
retrims at V3. However, once the
aircraft is retrimmed to the original
airspeed V] by increasing the tab
setting to ET5 s the apparent sta-
bility is increased.

Types of aerodynamic kalanc-
ing used to contrecl the hinge mo-
ment coefficients are as follows:

Set-Back-Hinge:

Perhaps the simplest method
of reducing the aerodynamic hinge
moments is simply to move the hinge
line rearward. Thus the hince mo-
ment is reduced because of the

moment arm betwoeun the elevater
lift and the elevator hinge line
is reduced. (One may arrive at the

same conclusion by arguing that
part of the elevator lift acting
behind the hinge line has been re-
duced, while that in front of the
hinge line has been increased.)
The net result is a reduction in
the absolute value of both Ch, and

Chs. In fact if the hinge line is
set back far enough, the sign of
both derivatives can be changed.



FIGURE 3.30
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QOverhang Balance:

This method is simply a spe-
cial case of set-back hinge in
which the elevator is designed so
that when the leading edge pro-
trudes inteo the airstream, the
local velocity is increased sig-
nificantly; causing an increase in
negative pressure at that point.
This negative pressure peak creates
a hinge moment which opposes the
normal restoring hinge moment, re-
ducing Chg. Figure 3.31 shows an
elevator with an overhang balance.

FIGURE 3.31
OYERHANG BALANCE
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Horn Balance:

The horn balance works on
the same principle as the set-back
hinge, i.e., to reduce hinge moments
by increasing the area forward of
the hinge line. The horn balance,
especially the unshielded horn, is
very effective in reducing Ch, and
Chs. This arrangement shown in
figure 3.32, is also a handy way
of improving the mass balance of
the control surface.

FIGURE 3.32
HORN BALANCE
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Internal Balance or Internal
Seal:

The internal seal allows the
negative pressure on the upper sur-
face and the positive pressure on
the lower surface to act on an in-
ternal sealed surface forward of
the hinge line in such a way that
a helping moment is created, again
opposing the normal hinge moments.
As a result, the absolute values of
Chy and Chg are both reduced. This
method is good at high indicated air-
speeds but is sometimes troublesome
at high Mach numbers.

FIGURE 3.33
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Elevator Modifications:

Bevel Angle on Top Oor on
Bottom of the Stabilizer.

This device, which causes
flow separation on one side but
not on the other, reduced the abso-
lute values of Ch, and Chg.

Trailing Edge Strips.

This device, found on the
B-57, increases both Chy and Chsg.
In combination with a balance tab,
trailing edge strips produce a very
high positive Ch,, but still a low
Chg. This results in what is called
a favorable "Response Effect," i.e.,
it takes a lower control force to
hold a deflection than was originally
required to produce it.

Convex Trailing Edge.

This type surface produces
a more negative Chg, but tends as
well to produce a dangerous short-
period oscillation.

Tabs:

A tab is simply a small flap
which has been placed on the trail-
ing edge of a larger one. The tab
greatly modifies the flap hinge
moments but has only a small effect

on the lift of the elevator or the
entire airfoil. Tabs in general

are designed to modify stick-forces
and therefore Chs but will not
affect Ch,. A positive tab deflec-
tion is one which will tend to move
the elevator in a positive direc-
tion.

Trim Tab.

A tab which is controlled by
a switch or control separate from
the normal cockpit pilot control
is called a trim tab. The purpose
of the trim tab is to reduce the
elevator hinge moment and, there-
fore, the stick force to zero for
a given flight condition. A satis-
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factory trim tab should be able to —
accomplish this throughout the air-
craft flight envelope. Ordinarily,
a trim tab will not significantly
vary Chg or Chs. The functions of
the spring and trim or balance and
trim tabs may be combined in a
single tab. Another method of
trimming an aircraft is the use

of an adjustable horizontal sta-
bilizer. Normally the trim tab or
horizontal stabilizer setting will
have a small effect on stability.

Balance Tab.

A balance tab is a simple
tab which is mechanically geared
to the elevator so that a certain
elevator deflection produces a
given tab deflection. If the tab
is geared to move in the same direc-
tion as the surface, it is called
a leading tab. If it moves in the
opposite direction, it is called
a lagging tab. The purpose of the
balance tab is usually to reduce
the hinge moments and stick forces -
(lagging tab) at the price of a
certain loss in control effective-
ness, Sometimes, however, a lead-
ing tab is used to increase controeol
effectiveness at the price of in-
creased stick forces. The leading
tab may also be used for the ex-
press purpose of increasing control
forces. Thus Chg may be increased
or decreased, while Ch, remains
unaffected. If the linkage shown
in figure 3.34 is made so that the
length may be varied by the pilot,
then the tab may also serve as
a trimming device.

wazom

FIGURE 3.34
BALANCE TAB




Servo or Control Tab.

The servo tab is linked
directly to the aircraft control
system in such a manner that the
pilot moves the tab and the tab
moves the elevator, which is free
to float. The summation of elevator
hinge moments, therefore, always
equals zero since the elevator will
float until the hinge moment due to
elevator deflection just balances
out the hinge moments due to ag and
d¢. The stick forces are now a func-
tion of the tab hinge moment or Chgp.
Again Ch, is not affected.

Spring Tab.

A spring tab is a lagging
balance tab which is geared in
such a way that the pilot receives
the most help from the tab at high
speeds where he needs it the most,
i.e., the gearing is a function of
dynamic pressure. The basic prin-
ciples of its operation are:

FIGURE 3.35
SPRING TAB
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1. An increase in dynamic pres-
sure causes an increase in
hinge moment and stick force
for a given control deflection.

2., The increased stick force
causes an increased spring
deflection and, therefore, an
increased tab deflection.

3. The increased tab deflection
causes a decrease in stick
force. Thus an increased
proportion of the hinge mo-
ment is taken by the tab.

4. Therefore, the spring tab is
a geared balance tab where
the gearing is a function of
dynamic pressure.

5. Thus the stick forces are
more nearly constant over the
speed range of the aircraft.
That is, the stick force re-
quired to produce a given de~
flection at 300 knots is still
greater than at 150 knots,
but not by as much as before.

6. After full spring or tab
deflection is reached the
" balancing feature is lost
and the pilot must supply the
full force necessary for fur-
ther deflection. (This acts
as a safety feature.)

Because of the very low force
gradients in most modern aircraft
at the aft center of gravity (dCp/
dCLpree less negative), improve-

ments in the stick-free longitu-
dinal stability are obtained by
devices which produce a constant
pull force on the stick independent
of airspeed which allows a more
noseup tab setting and steeper stick
force gradients. Two such gadgets
for improving the stick force gra-
dients are the downspring and bob-
weight. Both effectively increase
the apparent stability of the air-
craft.

FIGURE 3.3
DOWNSPRING
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DownsEring:

A virtually constant stick
force may be demanded of the pilot
by incorporating a downspring or
bungee into the control system
which tends to pull the top of the
stick forward. From figure 3.36,
the force required to counteract
the spring is,

F = T

s = K3 (3.100)
Downspring 2

If the spring is a long one, the
tension in it will be increased

only slightly as the top moves rear-
ward and can be considered to be
constant,

The equation with the downspring
in the control system becomes,

F =KV2+K + K

s le 2 (3.101)

Downspring

As shown in figure 3.29, the
apparent stability will increase
when the aircraft is once again
retrimmed to the original trim
airspeed by increasing the tab set-
ting. Note that the downspring
increases apparent stability but
does not affect the actual sta-
bility dcm/dCLFree (no change to K3)
of the aircraft.

FIGURE 3.37
BOBWEIGHT
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Bobweight:

Another method of introducing
a nearly constant stick force is by
placing a bobweight somewhere in
the control system which causes a
constant moment which must be over-
come by the pilot. The force which
the pilot must apply to counteract
the bobweight is,

4

F = oW~ = K (3.102)
8B obweight 4 3

Like the downspring the bobweight
increases the stick force through-
out the airspeed range and, at in-
creased tab settings, the apparent
stability or stick force gradient.
The bobweight has no effect on

the actual dCm/dCLpyee Of the air-
craft.

Elevator Unbalance:

There are other devices which
increase the stick force gradient
through trim or apparent stability,
The unbalance in the control system
resulting from the center of gravity
of the elevator falling aft cf the
hinge line is shown in figure 3.38,

FIGURE 3.38
ELEVATOR UNBALANCE
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From the figure it can be seen that
an elevator cg behind the hinge line
will tend to rotate the top of the
stick forward. This must be counter-
acted by a positive pull stick force.



As the elevator is moved from the
horizontal, the hinge moment is re-~
duced by the cosine of the deflec-
tion angle; this moment remains
virtually constant. Thus a forward
hinge line which usually produces a
destabilizing (positive) Chg will
also produce a "stabilizing" elevator
unbalance.

Comment:

Since hp is usually found by
equation 3.96, it would be worth-
while to examine the effect of the
stick force gradient dFs/dV on this
equation. Rewriting equation 3.88,
with a downspring used as the con-
trol system gadget,

% dc_

8
F, = Aq(B + Ch6 §.) - AC/q ¢ d&c
T 8 Free
No Gadget
1
+ K3
Gadget (3.103)

§ dCm
Fgla = A+ Ché 6p) - AC G T
T 6e Free
No Gadget
.t
. k3 CL
Ww/S (3.104)
dF dc K.!
S m_ o, 3 (3.105)
dCL 2 dCL W/s
Free
No Gadget

Obviously the cg location at which
dFg/q/dC1, goes to zero will not be
the true h). However, the only
reason that the term dCn/dCLpree

was of interest in the first place
was because it was proportional to
the stick force gradient. The pilot
is more interested in the apparent
stability for the same reason. The
fact that the addition to the stick-

free stability caused by this
gadgetry is "artificial" rather
than genuine is only cf academic
interest.

3.14 HIGH SPERED
LONGITUDINAL STATIC
STABILITY

The effects of high speeds
(transonic and supersonic) on longi-
tudinal static stability can be
analyzed in the same manner as that
done for subsonic speeds. The
assumptions that were made for the
incompressible flow are no longer
valid,

Compressibility associated
with the transonic and supersonic
speed regime has noticeable ef fect
upon both the gust stability (lon-
gitudinal static stability Cmcy) and
speed stability (Fs/V). The gust
stability depends mainly on the
contributions to stability of the
wing, fuselage, and tail in the
stability equation below during
transonic and supersonic flight.

de
Vit \1 T da

0.
O
»
Q.
I
m|hp

(3.106)

The terms in the stability equation
will be examined in turn.

The Wing Contribution:

In subsonic flow or low Mach
flight, the aerodynamic <enter is
at the guarter c¢hord. As subsonic
Mach approaches unity or the tran-
sonic speed is approached, flow
separation occurs behind the shock
formations causing the acrodynamic
center to move forward of the quarter
chord position. The immediate effect
is a reduction in stability since
Xw/c increases. Following the flow
separation behind the shocks at
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positions of sonic speed, the flow
pattern on the airfoil eventually
transitions to superscnic flow.

The shocks move off the surface and
the wing recovers lift. The aero-
dynamic center now moves aft towards
the 50-percent chord position. There
is a sudden increase in the wing's
contribution to stability since

Xw/c is reduced (figure 3.1).

The extent of the aerodynamic
center shift forward and rearward
depends greatly on the aspect ratio
of the aircraft. The shift is least
for low aspect ratio aircraft. Among
the plan forms, the rectangular wing
has the largest shift for a given
aspect ratio whereas the triangular
wing has the least (figures 3.39 and
3.14).

FIGURE 3.39
ac YARIATION WITH MACH
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The Fuselage Contribution:

In supersonic flow the fuse-
lage center of pressure moves for-
ward causing a positive increase in
the fuselage dCp/dCL or a destabiliz-
ing influence on the stability equa-
tion. The fuselage term variation
with Mach number will be ignored.
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The Tail Contribution:

The tail contribution to sta-
bility depends on the variation of
lift curve slopes, aw and ar, plus
downwash ¢ with Mach during transonic
and supersonic flight. It is ex-
pressed as: -ap/ay Vgnp (1 - de/da)

During subsonic flight atr/ay
remains approximately constant. The
slope of the lift curve, ay varies
as shown in figure 3.40. This vari-
ation of ay in the transonic speed
range is a function of geometry (i.e.,
aspect ratio, thickness, camber,
and sweep)., Limiting further dis-
cussion to aircraft designed for
transonic flight or aircraft which
employ airfoil shapes with small
thickness to chord ratios, then
ayw increases slightly in the tran-
sonic regime. For all airfoil
shapes the values of ay and ay decrease
as the airspeed increases super-
sonically. The overall ap/ay contribu-
tion is generally destabilizing
in the transonic regime and stabilizing
in the supersonic regime.

FIGURE 3.40
LIFT CURVE SLOPE YARIATION WITH MACH
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The tail contribution is fur-
ther affected by the variation in
downwash, ¢, with Mach increase.

The downwash at the tail is a re-
sult of the vortex system asso-
ciated with the lifting wing. It

is recognized that the tail loca-
tion will have considerable in-
fluence as to the degree of varia-
tion of 6e with Ae., An aircraft
such as the F-100 has a great deal
more variation of 8a due to downwash
effects than the F-104. Since down-
wash is a direct function of wing
lift, a sudden loss of downwash
occurs transonically with a result-
ing increase in tail angle of attack.
The effect is to require the pilot
to apply additional up elevator with
increasing airspeed to maintain al-
titude, This additional up elevator
contributes to speed instability.
(Speed stability will be covered
more thoroughly later.,) Downwash
variation with Mach is seen in fig-
ure 3.41.

FIGURE 3.41
DOWNWASH VARIATION WITH MACH
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The variation of de/da with
Mach number greatly influences the
aircraft's gust stability dCn/4CL.
Recalling,

. 114.6CL where de . 114.68w
€ 7R da TR
(3.107)

Since the downwash angle behind

the wing is directly proportional
to the lift coefficient of the
wing, it is apparent that the value
of the derivative de/de is a func-

tion of aw. The general trend of
de/da is an initial increase with
Mach starting at subsonic speeds.
This increase follows a trend simi-
lar to but at a lesser slope than
the increase of the lift curve
slope, aw, of the wing. Above Mach
1.0, de/da decreases and approaches
zero. This variation depends on
the particular wing geometry of

the aircraft. As shown in figure
3.42, de/de may dip for thicker wing
sections where considerable flow
separation occurs. Again, de/da is
very much dependent on ay.

FIGURE 3.42 .
DOWNWASH DERIVATIVE vs MACH

DOWMWASH DERIVATIVE vs MACH

>

Downwash Derivative

Mach Number, M

For an aircraft designed for
high speed flight, the variation
of de/da with increasing Mach num-
ber results in a slight destabiliz-
ing effect in the transonic regime
and contributes to increased sta-
bility in the supersonic speed regime.

As the wing surface becomes
a less efficient lifting surface,
a loss of stabilator effectiveness
is experienced in supersonic flight,
The elevator power, Cmsg increases
as airspeed approaches Mach 1.0.
Beyond Mach 1.0, elevator effective-
ness decreases. Consequently, in-
crease of elevator power causes a
positive 4§y contribution or again
an indication of speed instability
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as Mach 1.0 is approached. With
decrease in elevator power, a nega-
tive Ad, contribution once again
produces speed stability. For the
F-104 the relative order of magni-
tude nf these values cause an
initial increase in gust stability
in the transonic regime followed

by a steadily decreasing stability
influence as Cmg, approaches zero.

de [
_ (1 B iﬂ_) (3.108)
da

The overall effect of tran-
sonic and supersonic flight on gust
stability or dCm/dCr is shown in
figure 3.43. Static longitudinal
stability increases transonically
and then decreases supersonically.
The speed stability of the air-
craft is affected as well. Recall-
ing the pitching moment coefficient
eguation,

AC = C
m m

+C AV + C Oq
ot m
v q

aind nivee Cmey, = 3 ©my , then:

Assuming no change in speed or
pitch rate, and since under com-
rressibility Cpg is not zero, the

clevatnr required to maintain steady
flight is:

e = - - —= AC (3.110)

Speed stability depends on the
variations of &g with transonic
and supersonic speeds and accord-
ing to equation 3.110, depends on

how Cmg, Cmﬁe, and CmcL vary.
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FIGURE 3.43
MACH YARIATIONS ON Cmq, Cmse AND C'“CL
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If equation 3.110 is analyzed
using the plots in figure 3.43,
speed instability during transonic
flight becomes obvious. The value
of - Cmo/Cm;e increases from approx-
imately zerc in the subsonic range
to some positive value as the air-
craft passes through Mach 1.0. The
value of CmCL/Cmﬁe increases tc a
very large number in comparison to
Cmo/cmée through this same range.
The result is a positive 145 oOr a
reversal of elevator deflection
with increasing airspeed. This
manifests itself as a relaxation
of forward pressure or even a pull
force to maintain attitude or pre-
vent a nose down tendency. As the
aircraft speed increases to super-
sonic speed, Ade again becomes nega-



tive and the pilot regains speed
stability or decreasing 8e with
increasing airspeed. The actual
results of some aircraft flown in
this range are shown in figure 3.44.

FIGURE 3.44
Se vs MACH
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Whether the speed instability
1 reversal in elevator deflections
1 stick forces are objectionable,
devends on many factors such as
magnitude of variation, length of
t ime required to transverse the
rog1on of instability, control sys-
*. % characteristics, and conditions
o1 tlight. It is impossible for
the engineer to determine from data
plote if the degree of instability
1o wceptable., The pilot is the
sniy one capable of evaluating these
offecrts,

In the F-100C, a pull force
ol L4 pounds was required when
accelerating from Mach 0.87 to
Mach 1.0. The test pilot described
this trim change as disconcerting
while attempting to maneuver the
alrcraft in this region and recom-
mended that a "g" or Mach sensing
device be installed to eliminate

1.5

this characteristic, Consequently,
a mechanism was incorporated to
autcmatically change the artificial
feel gradient as the aircraft accel-
erates through the transonic range.
Also, the longitudinal trim is
automatically changed in this region
by the use of & "Mach Trimmer."

In the F-104, the test pilot
stated that transonic trim changes
required an aft stick movement with
increasing speed and a forward stick
movement when decreasing speed, but
described this speed instability as
acceptable.

In the F-106 the pilot stated
that the 1.0 to 1.1 Mach region is
characterized by a moderate trim
change necessitating pilot technique
to avoid large variations in alti-
tude during accelerations. Minor
trim changes are encountered up to
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Mach 1.35, His report concluded
that the speed instabilities were
not unsatisfactory.

In the T-38 which embodies
the latest design concept, a de-
parture is noted from the low tail
configuration difficulties where
the pilot described the transonic
trim change as being hardly per-
ceptibkle.

Aircraft design considerations
are, of course, influenced by the
stability aspects of high speed
flight. It is desirable to design
an aircraft where trim changes
through transonic speeds are small.
A flat wing without camber, twist,
or incidence or a low aspect ratio
wing and tail provide values of
%w/c, aw, ap, and de/da which vary
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minimally over the Mach number range.
An all-moving tail (slab) for con-
trol gives negligible variation of

1 with Mach and maximum control
effectiveness. A full power, irre-
versible control system is necessary
to counteract the erratic changes

in pressure distribution which affect
Cha and Chée.

In the transonic speed re-
gime the meaning or importance of
"neutral point" is reduced. At
transonic speeds the variation of
control angle and trim force with
speed, although important, is not
affected by cg position. Instead
of relating trim gradients to a cg
margin, it is more useful to view
variation of control for trim as
a function of compressibility and
ignore cg position.



MANEUVERABILITY

B4.1 MANEUVERING FLIGHT

The method used to analyze
maneuvering flight will be to de-
termine stick-fixed maneuver points
(hm) and stick-free maneuver points
(hm). It will be seen that these
are analogous to their counterparts
in static stability, the stick-
fixed and stick-free neutral points.
The maneuver points will also be
defined in terms of the neutral
points and the theory will help to
predict which of these points will
be critical as regards the aft cen-
ter of gravity location. It will
also be shown how the forward
center of gravity is affected by
the parameters that define the
maneuver points.

Maneuvering flight will be
analyzed much in the same manner
used in determining a flight test
relationship in longitudinal sta-
bility. For stick-fixed longitu-
dinal stability, the flight test
relationship was determined to be

ds dc /dc¢
Ee. - c_m__L (4.1)
L g

e

This eguation gave the static lon-
gitudinal stability of the aircraft
in terms that could easily be mea-
sured in flight test.

In maneuvering flight, a simi-
lar stick-fixed equation relating
to easily measurable flight test
quantities is desirable. Where in
longitudinal stability, the ele-
vator deflection was related to
lift coefficient or angle of attack,
one may surmise that in maneuver-
ing flight elevator deflection will
relate to load factor n.
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To determine this expression,
one must refer to the aircrafi's
basic equations of motion. As in
longitudinal stability, the six
equations of motion are the bazis
for all analysis of aircraft staq-
bility and control. 1In mane..;ering
an aircraft the same equations will
hold true, but one additional iierivg-
tive will have to be added to the
analysis. Recalling the pitching
moment eguation

. . 2 2
M = qu + pr (Ix - Iz) +(p - ) Ixz

(4.2)

and the fact that in static sta-
bility analysis we have no roll
rate, yaw rate, or pitch accelera-
tion, equation 4.2 reduces to:

M = qI = 0 4,
q y (4.3)

The variables that cause
external pitching moments on an
aircraft are infinite, i.e., speed
brakes, canopy, elevator, etc.
There are, however, five primary
variables that we can consider.

M = £V, q, a, 58. q) (4.4)

If any or all of these vari-
ables change, there will be a
change of total pitching moment that
will equal the sum of the partial
changes of all the variables. This
is written as

. M M 4 9M
AM = Ja Acx+—-; cx+'d_6-3$e+
AM A 2M Aq
v °v+t Jq (4.5)
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Since in maneuvering flight, aV
and A& are zero, equation 4.5 be-
comes :

2M M IM _
=28 Ag + A + == A = 0
A M a 8. Iq q

da d&e
(4.6)
and since M = gSc¢ Cm, then
>C
am _ m
Ja - 9 Sc Ta - q Sc C‘“a (4.7)
IM acm
- = q Sc = qSc C (4.8)
a5, 3,
e
C
oM o m
o = S (4.9)
! 1°¢ 54

Substituting these values into
equation 4.6, and multiplying by
1/q Sc, ’

’ 4 oC
¢, da+cC As +—2A4q =
l(r mse e a q

0 (4.10)

The derivative 3Cnp/dqg is
carried instead of C since the
compensating factor c/2V is not
used at this time.

Solving for the change in
«levator deflection Aég,

Aa - dC A
@-9C /3 Ba )

ax

C

s

e

The analysis of equation 4.1l
may be continued by substituting
in values for Aa and Ag. The final
equation obtained should be in the
form of some flight test relation-
ship. Since maneuvering is re-
lated to load factor, the elevator
deflection required to obtain dif-

4.2

ferent load factors will define

the stick-fixed maneuver point.

The immediate goal then is to de-
termine the change in angle of
attack, 4a, and change in pitch
rate, Aq, in terms of load factor n.

B 4.2 THE PULL UP MANEUVER

In the pull up maneuver, the
change in angle of attack of the
aircraft, Aa, may be related to
the 1lift coefficient of the air-
craft. 1In the pull up with con-
stant velocity, the angle of attack
of the whole aircraft will be
changed since the aircraft has to
fly at a higher Cy, to obtain the
load factor required. The change
in C required to maneuver at high
load factors at a constant velocity
comes from two sources: (1)} load
factor increase, (2) elevator de-
flection. Although often ignored
because of its small value when
compared to total Cy, the change

in lift with elevator deflection
CLdeA5e will be carried along for

a more general analysis.

R
AFTER
ELEVATOR
DEFLECTION
: BEFORE 1
CL ELEVATOR >
DEFLECTION
CL MAN
ACLuAN
CL,
CLSeAse
1
Aa
r———————
a, QMAN

Figure 4.1 Lift Coefficient Versus Angle of Attack



"Refafring to figure'4.:t, the
aircraft is in equilibrum at some
ClL, corresponding to some a, kefore
the ~levator is deflected to ini-
tiate the pull up. If the elevator
is considered as a flap, its de-
tflection will affect the 1lift curve
a3 follows. When the elevator is
deflected upward, the 1lift curve
shifts downward and does not change
stope. This says that a certain
amount of lift 1s initially lost
when the elevator is deflected up-
ward. The loss in lift because of
elevator deflection is designated
Ly "%e. The increase in down-

loading on the tail or increase in
negative lift on the horizontal
stabilizer causes a moment on the
wircraft which cragfex . a nose up
pit-h rate. The & ﬁ@é&if'bSﬁfinues
tn pitch upward and-increase its
anale of attack until it reaches

a new Cr, and an eqguilibrium load
factor. In other words a pitch
rite 1s 1nltlated and « increases
antil a maneuvering lift coefficient

”“MAN 143 reached for the deflected

cloevator 4,5, The change in angle
of attack is ax. The change in Cf,
has come partiatly: from the de-
Flected elevator and mainly from
the pitching maneuver. The change
in Ci, <due to the maneuver is from
Cle t CLMAN' Since‘it did not
chanye the slope of the 1lift curve,
if the change in lift caused by
cilevator deflecrtion dd tnchaied,
the oxpression for ‘n becomes:

o

(fr = au (4.12)
e, = ada (4.12a)
Ag = : - ¢ A = A

¢, A Clyan LL&e 8, ada (4.13)
A -1 [AC - C AB 4
STy SRS ‘Lse e] (4.14)

To put eguation 4.14 in terms of
load factor, ACLMAN must he defined.
I

This is the change in !ift from

the initial condition to the fihal
maneuvering condition. This <¢ha A
can occyy frem one g flight to somea
other lcad fagtor or it can start

at 2 or 3 g'& %ng progress £o some
new load fagtor. If Cp is at one

g then L1
w )
= — { 15

L e (¢ald)

nW

c, % .

Lo 3 Dy is inirial Joaq Tactor
(4.16)
nW

C.v& = is Dhgal load factor

hay 9
(4.17)
66
AC = C - C
Lian b %
1
nW mﬂ .

N E;’: i —E\: B (.r;(n-”\)) (4'18)
Finally substituting ACLMAN into
equation 4,14,

1 . g ,
/ = — { - - - 4.19
Aa 3 [CL (1 no) CLig - e | { J

Fguagion £8.13 Asmidw re@dy fot _
SuBétitut&on:gpun—cqyatiqp b3,

An expression for Ag in equa-
tion 4.11 will be derived using the
pull up maneuver analysis,.
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Figure 4.2 Curvilinear Metion

Referring to figure 4.2

AS (4.20)

A - —
° R

@ _ lm 29 _ Um A4S 1 (4 23
dt pt—=0 At ApAtwo,t R

A SR (4.3
From figure 4:2

o2 88 (gma mmetes)  14:33)
gm0 8 uay

TR ?:gag

i

combining equations 4.24 and 4.22,

2
dv v
3t R (4.25)
VAL
i
LO
now
Y
ACF nW
\ ]
Figure 4,3 Wings Level Puil Up
From figure 4.3,
,AL = ACF = nW - nOW (4 260"

gin the factor now indicates
gg thg chapbge may take place
FSl &n Qriginal load factor and

§ pot 1ipited to the straight agd
gygf fligpt fondition. The cepbri-
Bya fﬁfés.?ﬂat Bolds the aircraft
in equilibrium can bé expressed as:

{4.27)



Therefore:
WV iV Vv |_
AL = W(n-no)=g—(§-§)— ACF (4.28)
B - = VY.V _ .- -
v (m-mn) R K 9 -9, = 4q(4.29)

Aq =5 (n - n) (4.30)

v

Now equations 4.30 and 4.19 may be
substituted into eguation 4,11.

1
As, = Cp 3 [CL (a-mn) - CLae Ase]
Cro,
aC
T8 (- )
J‘LCV o (4.31)
n‘se

From longitudinal stability,
. ) aC, ACL
My d CL Fa

= a(h-h) (4.32)
n

Also to help further in reducing
the eguation to its simplest terms,

2 2 W
v = (4.33)
FSCL
and
de c
74 = TV-Cmq (4.34)

Substituting equations 4.34, 4,33
and 4.22 into equation 4,31 and
turning the algebra crank, results

in,
A 6e _ aCL
n-no Cm CL - Cm a
a B B
e e

(4.35)

Equation 4.35 is now in the
form that will define the stick-
fixed maneuver point for the pull
up. The definition of the maneuver
point (hp) is the cg position at
which the elevator deflection per
g goes to zero. Taking the limit
of equation 4.35, where 4&n is de-
fined as (n - ng),

Aﬁe dSe
lim C— = an (4.36)
An n
An—-o
or
ds acC ~ -
e _ L Sc .
& T T ¢ -c_ a l.h hn*’czmtm,j
5 T
e € (4.37)

Setting equation 4.37 equal to zero
will give the cg position (h) as
the maneuver point (hp).

(4.38)

h = h -P3% ¢
n 4m m

m

Solving equation 4.38 for hp, and
substituting into equation 4.37,
d5e aC

d_n=CmC - C a (h-hm)

(4.39)

where (hpy - h) is defined as the
stick-fixed maneuver margin.

The significant points to be
made about equation 4.39 are:

1. The derivative ddg/dn varies
with the maneuver margin.
The more forward the cg, the
more elevator will be required
to obtain the limit load fac-
tor. That is, as the cg
moves forward, more elevator
deflection is necessary to
obtain a given load factor.

2. The higher the C1, the more
elevator will be required to
obtain the limit load factor.
That is, at low speeds (high
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Cy,) more elevator deflection
is necessary to obtain a
given locad factor than is
required to cbtain the same
load factor at a higher
speed (lower Cr).

3. The derivative dég/dn should
be linear with respect to cg
at a constant Cr,.

HIGH Cy

I

y

7. c.g.
Lowc, hen A

dde
dn

45,
Figure 4.4 an Vs cg

Another approach to solving
for the maneuver point (hm) is to
return to the original stability
equation.

dc . dC
m ac m
i T M-t ow
T, LFus, -
a de
- _I n —
aw VH T (1 da ) (4.40)

The effect of pitch damping
on the aircraft stability will be
determined and added to equation
4.40, Recalling the relationship:

n C
-JEI'- T Cmq (4.41)
oxr
Ac = =
(..m = EVCmq Aq (4.42)

Substituting the value obtained
for &q from equation 4,30,

n T o2 Cmg (- n) (4.43)

Ac

4.6

Substituting the appropriate Ci,
expression for load factor,

Sc
AC = P=—cc, (C -C ) (4.44)
m 4m Mg Ly, L,
if
Ac = C -C s then
L Lvan Lo
A
lim ¢ _ de = P Sc
T T & = P
Acj—o Ag " Lpitch Damping

(4.45)

This term may now be added to
equation 4,45, If the sign of Cmq
is negative, then the term is a
stabilizing contribution to the
stability equation. Cmg will be
analyzed further.

de Xac de aT 7
c T T tx w4
L L
Fus
de Sc -
€ Qo 2C
da )+ 4m Cmq (4.46)

The maneuver point is found by
setting dCp/dC1, equal to zero and
solving for the cg position where
this occurs.

ac T mn
= el e ———
hm c dcC a VH T
L W
Fus
de Sc

- —) - R 2= -
. da 4m Cm (4.47)

The first three terms on the right
side of equation 4 .47 may be iden-
tified as the expression for the
neutral point hp. If this substi-
tution is made in equation 4.47,
equation 4.38 is again obtained.

Sc
= _P_
hm hn 4m Cmq (4.48)



The derivative Cm, found in
equation 4.37, 4.38, and 4.46 needs
to be examined before proceeding

- with further discussion.

The damping that comes from
the pitch rate established in a
pull up, comes from the wing, tail,
and fuselage components. The tail
is the largest contributor to the
pitch damping because of the long
moment arm. For this reason it is
usually used to derive the value
of Cmg. Sometimes an empirical
value is added to account for the
rest of the aircraft but more often
than not, the value for the tail
alone is used to estimate the deriva-
tive. The effect of the tail may
be calculated in the following
manner:

AM

Figure 4.5 Pitch Damping

The pitching moment effect on the
aircraft from the downward moving
horizontal stabilizer is:

= - , = A (4.49)
AM ZT AL, = q S e Ac
where
Sl = 9. S, -HL‘ (4.50)
T
Solving for aCp,
q. L. S
ve o= - —ETT T ag (4.51)
" y Cw Sw T

The combination pST/cySy can

be recognized as the tail volume
cocfficient Vyg. The term gr/ay is

referred to as the tail efficiency
factor nq.

Equation 4.51 may then be written:

= - n
Acm vH T ACL (4.52)
T
which can be further refined to:
AC = -V 7T a2 Ag (4.53)

m H T T T

From figure 4.3, the change in
angle of attack at the tail caused
by the pitch rate will be:

Z A
Bo, = tant 22T = ag T (4.54)

T

Substituting equation 4,54 into 4.53

V4
AC = - a_ Vv n _T Aq

m T'H T V (4.55)

Taking the limit of equation 4,55
gives

ac

—2 . _a y_ 7 ;éz (4.,56)
24 T H T V

Equation 4.56 shows that the damp-
ing expression 3cp/3¢ 1is a function
of airspeed, i.e., this term is
greater at lower speeds.

Solving for Cmq,

T
q (4.57)

The damping derivative is not a
function of airspeed but rather

a value determined by design con-
siderations only (subsonic flight).
The damping in pitch derivative
may be increased by increasing Sq
or Lp.

When this value for Cmq is
substituted into equation 4,48,

4.1




Sap "¢ 4y

h = hn+f°——-—2m——— Yy

The following conclusions are
apparent from equation 4.58,.

1. The maneuver point should
always be behind the neutral
point. This is verified
since the addition of a pitch
rate increases the stability
(Cmq is negative in equation
4.46) of the aircraft,
fore, the stability margin
should increase.

2. Aircraft geometry is influ-
ential in locating the maneu-
ver point aft of the neutral
peint.

3. As altitude increases, the
distance between the neutral
peint and maneuver point de-
creases.

4. As weight decreases at any
given altitude, the maneuver
point moves further behind
the neutral point and the
maneuver stability margin in-
creases.

5. The largest variation between
maneuver point and neutral
point cccurs with a light
aircraft flying at sea level,

B 4.3 AIRCRAFT BENDING

Before the pull up analysis
1s completed, one more subject
should be covered. One of the
assumptions made early in stability
was that the aircraft was a rigid
body. It is a well known fact
that all aircraft bend when a load
is applied. The bigger the air-
craft, the more they bend. The
effect on the aircraft bending is
shown in figures 4.,6a and 4.6b.

4.8

(4.58)

There-

Figure 4,62 Rigid Aircraft Under High Load Factor

arz <11'2 <arty

Figure 4.6b Non-Rigid Aircraft under High Load Factor

The angle of attack of the tail is
approximately the same as the angle
of attack of the wing with the ex-
ception of downwash, incidence,
etc., for a particular elevator de-
flection. As the non-rigid air-
craft bends, the angle of attack

ap of the horizontal stabilizer
decreases. In order to keep the
aircraft at the same overall angle
of attack, the original angle of
attack of the tail must be reestab-
lished. This requires an increase
in the elevator (slab) deflection
or a Adg to reestablish the neces-
sary oap and to maintain the re-
quired maneuvering Cy. This addi-
tional elevator requirement under
aircraft bending gives an apparent
increase in the maneuvering sta-
bility of the aircraft or an addi-
tional Ade per load factor.

B 4.4 THE TURN MANEUVERING

The subject of maneuvering in
pull ups has been thoroughly dis-
cussed and while it is the easiest
method for a test pilot to perform,
it is also the most time consuming.




Therefore, most maneuvering data

is collected by turning. There

are several methods used to collect
data in a turn and these are dis-
cussed in Chapter 5, Vol I, Stability and
Control Flight Test Techniques.

In order to analyze the
maneuvering turn, equation 4.11
is recalled:

Cm, A - de/dq Aq

e C
m,

88

(4.59)

The expression for Aa in
equation 3.19, derived for the
pullup maneuver, is also applicable
to the turning maneuver.

1
sa = 1 [cL (m-n)-c Aa.e] (4.60)

S)
e

Such is not the case for the &g
expression in equation 4.59.
Another expression, for Aq pertain-
ing to the turn maneuver must be

. developed.

Referring to figure 4.7, the
1ift vector will be statically
balanced by the weight and centrif-
ugal force. One component (L cos ¢)
balances the weight and the other
(L sin ¢) balances the centrifugal
force.

L Lcos ¢

o

g

L‘;¢ C.F.

tw

Figure 4.7a

>y

RADIUS OF TURN

q=Qsn¢
r = Qcos ¢
2= ¥

R

2
: - - ¥ v
L sin® = CF : R (4.61)
LcosP = W (4.62)
B p— (4.63)
n cos @

Now dividing 4.61 by 4.62 and re-
arranging terms:

g sin @

V cos 9 (4.64)

y .
R

Referring to figure 4,7 where

pitch rate is represented by a
vector along the wings and yaw rate
a vector vertically through the
center of gravity, the following
relationships can be derived.

Q = % (4.65)
¢ = Qsind (4.66)
q = = sin (4.67)

4.9







Therefore, most maneuvering data

is collected by turning. There

are several methods used to collect
data in a turn and these are dis-
cussed in Chapter 5, Vol I, Stability and
Control Flight Test Techniques.

In order to analyze the
maneuvering turn, equation 4.11
is recalled:

Cm, B a - dc /dq Aq

-liie = - c_ (4.59)
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The expression for 4a in
equation 3.19, derived for the
pullup maneuver, is also applicable
to the turning maneuver.

1
sa = 2o -y -c as,] a.60)

)
e

Such is not the case for the &g
expression in equation 4.59.
Another expression, for Aq pertain-
ing to the turn maneuver must be

. developed.:

Referring to figure 4.7, the
1ift vector will be statically
balanced by the weight and centrif-
ugal force. One component (L cos %)
balances the weight and the other
(L sin ¢) balances the centrifugal
force.

L Lcos ¢

¢/’

e

C.F.

Lsin ¢

v

Figwe 4.73

-

RADIUS OF TURN

r = Qecos g
=V
R

Figure 4.7b Aircraft in the Turn Maneuver

2
. - A A
1 sin ® = CF z R (4.61)
Lcos® = W (4.62)
e (4.63)
n= cos @

Now dividing 4.61 by 4.62 and re-
arranging terms:

vV _ g sind
R V cos 9 (4.64)

Referring to figure 4,7 where

pitch rate is represented by a
vector along the wings and yaw rate
a vector vertically through the
center of gravity, the following
relationships can be derived.

o = 3 (4.65)
q = Q sin (4.66)
q = = sin g (4.67)

4.3




substituting 4.64 into 4.67,

2
_ & sin” ¢
4 V cos 9 (4.68)
. g 1- coszﬂ (4.69)
T 7 % Cos 9 )
1
4 5 (Gos g - °°¢ 2 (4.70)
q = Em-D (4.71)
v n

When maneuvering from initial con-
ditions of ng to n, the Ag equation
becomes,

30 - a-aq = Ea-d a1,
o]
(4.72)

- B g - L
49 - Em-n) +oby (4.73)

The general expression for ag in
eqiuation 4.73 and the value for

in equation 4.60 may now be sub-
stituted into egquation 4.59 to de-
termine 8dg

. - .. X - -
SR C“‘u 2 [CL(n no) CLae ABe]
Cm
8e (4.74)
I g 1
- H v (n - no)(l + —-—nno)
Substituting
au
m C
da = 2 Omg
/ (m CL&

44 e
¢ - —_— Ay =
k e a e

e

Cm C
_ aaL (n_no)
1
—cmqi%(n-no)(1+nT) (4.75)
2v o

4.10

Cm‘x CL(n - no) + Cp

aﬁ% (n - “o)“*n—rllo)

- 4 gy
C Cp -C a
Mo "R, TS (4.76)
Now
= - '
C“‘a = a ¢h hn) and V = CLF’S
-_A 8 ) ac, .
(n - ) Cm,, CLSe - c,,,5e a

PSc 1

(h - hn) + Cmq—E.';(l + E;)
(4.77)

Taking the limit of 8ég/4n in equa-
tion 4.77 and,

dy aC

—-e= L -
dn Cm C1, - C a
My R “%e
Sc 1
- 4 RPE2= n -
h hn 4 4m omg (1 + nz) (4.7?)

The maneuver point is deter-
mined by setting dég/dn equal to
zero and solving for the cg posi-
tion at this point.

h = h - e3€

c
m n 4m Cm

1
(1 + =) (4.79)
n

q

The maneuver point in a turn
differs from the pullup by the
factor (1 + 1/n?). This means that
at higl load factors the turn and
pullup maneuver points will be very
nearly the same. If equation (4.79)
is solved for hp and substituted

back into equation #.78, the result
is:
ds aC
e _ L -
an s P (h hm) (4.80)

C
Cma LSE m6e



U

The ceonclusion that dég/dn 1is
the same for both pullup and turn
would be untrue since hp in equa-
tion 4.80 for turns (includes the
factor (1 + 1/n2) is different from
the hp found for the pullup maneu-
ver. The same conclusions reached
for 4.39 and 4.58 apply to 4.80 and
4,81 as well.

pSarVy nplp
m

. 5 a + 1/n%)

(4.81)

W45 RECAPITULATION

Before looking further into
the stick-free maneuverability
case, it would be well to review
the development in the preceding
paragraphs and relate it to the
results of chapter 3.

The basic approach to longi-
tudinal stability was centered
around finding a value for dCp/dCy,.
It was found that a negative value
for this derivative meant that the
aircraft was statically stable.

The derivative was analyzed for

the stick-fixed case first and

then the stick-free case. The cg
position where this derivative was
zero, was defined as the neutral
point., Static margin was defined

as the difference between the neutral
point and the cg location. The
stick-free case was determined by:

o de dC
o _ m - A _m (4.82)
RiY dC dCL

nifect of
Free Fflevator

Tutick -Fixed
Aircrate

Srick-Free
Avreraft
The free elevator case was
merely the basic stability of the
aircraft with the effect of freeing
the elevator added to it.

When the maneuvering case was
introduced, it was shown that there
was a new derivative to be discussed
but the basic stability of the air-
craft would not change - only the
effect of pitch rate was added to

it.

dc
m

dCL

Aircraft Pitching

L

Aircraft Pitching

dC
- )
dC.

dc a
i, - Ty AT

L‘Stlck—Free
Aircraft Pleching

dc a dcm

- + —_— (4.82)

dCL dCL
Stick-Fixed

Alrcraft

Effect of The
Pitch Race

\S:ick-thed

For the stick-free case, the follow-
ing must be true,

dC
a_e
4c.
Effact of
Free Zlevator

dc l 5 9,
(4.84)

Effect of

Pitch Rate

Srick-Fixed
Alrcraft

Stick-Free

dc
o)

dCL

A _ @
+ a:\ (4.35)
“'Effect of
Pitch Rate

\Scick-Free
Aircrafe

B 4.6 STICK-FREE MANEUVERING

The first analysis of stick-
free maneuvering requires a review
of longitudinal stability. It was
determined in chapter 2 that the
effect of freeing the elevator was
to multiply the tail term by the
free elevator factor F which equaled
(L - T Cha/chs)' Consequently, to
free the elevator in the maneuvering
case and find the stick-free maneu-
ver point, the tail effect of stick-
fixed maneuvering must be multiplied
by this free elevator factor. Re-
calling equation 4.47 from the
stick-fixed maneuvering discussion,

h - ac  _ m t v 7 )
m ¢ dCLFus a9 H T
de Sc .
-3 Zm Cnq {4.86)

dc a
ac m t v m

! = =& __ D _t

¢ dCLFus aw HoT

(4.87)

4.11




The first three terms on the
right are the expression for stick-
free neutral point, hp.

to= h - PSS
hm hn p&mcqu

This is the stick free maneuver
point in terms of the stick-free
neutral point for the pullup case.
It may be extended to the turn
case by using the term for the
pitch rate of the tail in a turn.

(4.88)

(4.89)

"= Se 1
hm = hn-/°4mCqu(1+n2)
These equations do not give
any flight test relationship and
so it is necessary to derive this
from stick forces, as was done in

longitudinal static stability.

The methecd used will be to relate
the stick force-per-g to the stick-
free maneuver point since stick
forces can be related to the freeing
of the elevator. Starting with the
relationship of stick force, gear-
ing, and hinge moments that was
derived in chapter 3,

F = -GH (4.90)
S e

- 4.
H, a8, ¢, Cy (4.91)
Fg = - GaS.e, G (4.92)

The change in stick force for a
change in load factor becomes,

AF_ ACh
- S = - Gqs c o (4.93)
An e e An
where
A
C, . c, Aal +C a4 (4.94)
a 6e e

4.12

Stick-Free Pullup Maneuver:

ACh must be written in terms

of load factor and substituted back

into equation 4.93.

This will re-

guire defining Aep and Adg in terms

of load factor.

The change in

angle of attack of the tail comes
partly from the change in angle of
attack of the wing due to downwash
and partly from the pitch rate.

d:e [T
= - —_—— Aq -2
AaT AGXJ (1 e ) + q 7 (4,95)
where Aay + Ag in the above equa-
tion are
Mg =1t C, (m=-n)-C, O35 | (4.96)
“w L o] L5e e] .
- £ -
Ag = g -n) (4.97)
aCL
a 5, = - (h-h)(m-n) -

CmaCLse - Cmse
(4.98)

If the equations above are

substituted into 4.94, the results
would be cumbersome at best. To
simplify things CLgg will be assumed

small enough to ignore.

(Reason-

able assumption since total change
in lift of the aircraft when the
elevator is deflected is small.)
The above equations simplify to:

Aa

AB

T

‘y

a

de
STl

- & -
(n no)+Vz.£T (n-n) (4.99)

C
L (4.100)

3 (h - hm) (n - no)

88

Substituting equations 4.99 and
4.100 into 4.94,



ACh - (o i(l__d_e_).{.c ﬁ
n-n  h a da h 872
0 a o v
CL
- Ch C (h - hm) (4.101)
sl m5

Substituting V¢ = 2W/pSCy and Cpg

= -ayvyt and isolating the maneu>
ver margin (h - hyp) by factoring
out (= Chg CL/Cmde)' the result is:

ac Che C. [ ch
- - - c5 - {Ca “'%NTTVH
R, e hgy
Ch 2
a T
+ EE; ‘3—55- Sa,t VH + h - hm]
(4.102)

From longitudinal stability,

Cha aTT

de
o __ - 4.10
Ch5 2 Vy -4z ) | 3)

h -h' =
n n

and if the second term in the paren-
thesis is multiplied by

-2ca

7—;2 and knowing that
-2can
v
- - 4
Cmq = ZaT =T (4.104)
Chy :
F = 1- T o (4.106)
hg
The second term becomes:
(F-1) P3E ¢ (4.107)
4m q *

Rewriting equation 4.102,

A Ch ~ Ch5

. Sc
Lhn -ho+ (1 - PP Cong - h+hm]

{4.108)

but
_ Sc

hy = h - Pz Cng (4.109)
Therefore:
A Ch Ch8
n-n = T Cme CL'

o R

' se
[h-hn +f"am Cag F]
(4.110)

Substituting equation 4.110 back
into 4 _93 and taking the limit

e Cp CL

dFs Ch8
d 5,

= G 1/2 Pvz sec

~
1

. s
Pt P e Cng F} (4.111)

Defining the stick-free maneuver
point as the cg position where
dFg/dn is equal to zero,

Se
' v o2& 4.112

q
which is the same egquation as 4,88
previously derived. Equation 4,111
may be written,

Ch

—S . g1/2 Pvls ¢ =2
e e Cm6
e

-

Equation 4.113 may be rearranged
if the following substitution is
made.

‘L

(4.113)

4.13




I (4.115)
RV’S

The stick-force-per-g equation
becomes:

Gis, ey Gy )@ (ﬁ) (h - hY)
' 6

e

(4.116)

Stick~-Free Turn Maneuver:

The procedure used for deter-
mining the dFg/dn equation and an
expression for the stick-free maneu-
ver point for the turning maneuver
is practically identical to the
pullup case. For the turn condi-
tion Ag is now,

Agq - 8 . 1
q v (n no) 1+ - ) (4.117)
(o]
The change in angle of attack of
the tail, Aaq and 884 become

C

Ny o= =L on - de
A wy 3 (n no)(l e Y +

Z
g &7 - 1
2 (n - )+ ““o) (4.118)

(h - hn)(n - no) +

P s Cag(nmn ) (L + XrlTo;l (4.119)
J

4.14

Substituting equations 4.118 and
4.119 into equation 4.94 and per-
forming the same factoring and
substitutions as in the pullup
case;

then,
A

“n _ _ ShglL
n-no Cm6

e

[h- hA+P%§cmq F (1 + 1/n2)J

(4.120)
Substituting 4.120 into 4,93
dF ChC
== cl/zﬂvzsecea—i—.
g
e
4 pSe 1_]
[h’hn+’94mcqu(l+ 5)
n”
(4.121)

And solving for the stick-free
maneuver point,

n' = ' -p@3% Cnm_ F (1+1/n2) (4.122)
m n 4m Mg

Further substitution puts equation
4.121 into the following form:

LNV SN
R IR

e

- = G(Se Co

(4.123)

Again, the turning stick-
force-per-g equation 4,123 appears
identical to the stick-free pullup
equation. However, the expression
for the maneuver point hy is dif-
ferent.

The term in the first paren-
thesis represents the hinge moment
of the elevator and the aircraft
size. The second term in parenthesis
is wing loading, and the third term in

parenthesis is the reciprocal of



clevator power. The last term is the
negative value of the stick-free
maneuver margin. The following conciu-
stons are drawn from this equation.

1. The stick-force-per-g appears
to vary directly with the wing
loading. However, weight also
appears inversely in hp.
Therefore, the full effect
of weight cannot be truly
analyzed since one effect
could cancel the other.

2. Since airspeed does not
appear in the equation, the
stick-force-per-g will be
the same at all airspeeds for
a fixed cgqg.

From eguation 4.112, come the
following conclusions.

1. The difference between the
stick-fixed and stick-free
maneuver point is a function
of the free elevator factor,
F.

2. The stick-free maneuver
point, hp, varies directly
with altitude, becoming
closer to the stick-free
neutral point, the higher the
aircraft flies.

The location of the stick-

free maneuver polint occurs where

dFg/dn = 0. It is difficult
to fly an aircraft with this
type gradient. Consequently,
military specifications limit
the minimum value of dFg/dn
to three pounds per g.

The forward cg may be limited by
stick force per g. The maxi-
mum value is limited by the
type aircraft (bomber, fighter,
or trainer); i.e., heavier
gradients in bomber type and
lighter ones in fiqghters.

W47 EFFECT OF BOBWEIGHTS AND SPRINGS

The effect of bobweights and
springs on the stick-free maneuver
point and stick-force gradients is
of interest. The result of adding
a spring or a bobweight to the con-
trol system adds an incremental
force to the syStem. The effect
of the spring is different from
the effect of the bobweight. The
spring exerts a constant force on
the stick no matter what load
factor is applied. The bobweight
exerts a force on the stick pro-
portional to the load factor.

BOBWEIGHT DOWNSPRING

Fs —T Fs

CONTROL -
COLUMN

T
.

n¥

AFs=Anw & AFs=T S
13 * 5

n 1.3}

Figwe 4.3 Bobweight and Downspring

The force increment for the
downspring and bobweight are:

W 1
AFs = G(Se <o Chs)(—s')(cm6 ).
Spring e

C

(h - h)(n - n) + Ty (4.124)
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W 1.
AFS = G(S, ¢ chd)(s)(and—)
Bobweight e

(h - h;) (n - no) + W-;- (n-no)
(4.125)

When the derivative is taken
with respect to load factor, the
effect on dFg/dn of the spring is
zero. The stick force gradient
is not affected by the spring nor
is the stick-free maneuver point
changed.

dFs W 1
- = G(S,¢, Chd)(gﬁ(a;;—) (h - hm)
Spring e (4.126)

For the bobweight, the stick
force gradient dFg/dn becomes:

F W 1

S _ G =) (e - '
Fralls (Secq Chd)(s)(cmd ) (h hm) + W%
Bobweight ¢ (4.127)

" Consequently, the addition
of the bobweight (positive) in-
creases the stick force gradient,
moves the stick-free maneuver point
aft, and shifts the allowable cg
spread aft (the minimum and maxi-
mum cg positions as specified by
force gradients are moved aft).
See fiqure 4.9.

MAX+ —
dFs
dn

MNP === = ===

h'm gog

h'm/ o~ o~ c.9.

Figure 4.9 Effects of Adding a Bobweight
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B 4.8 AERODYNAMIC BALANCING

Aerodynamic balancing is used
to affect the stick force gradient
and stick-free maneuver point.
Aerodynamic balancing or varying
values of Chcl and Chg affects the
following stick-free equations.

dF W 1
s _G(S Ch)(F) () (b - h')
—dn = G( e Ce h5 (S Cmée m 3(4.128)

Sc

! = ' - - .12

h h Pam ,an (4 9)
Cha'

F - 1 - T (4.130)
Ch8

Decreasing Chg and/or increas-
ing Ch, by using two such aero-
dynamic balanced devices as an
overhang balance or a lagging bal- "
ance tab, doces the following:

1. The free elevator factor, F,
decreases.

2. The stick-free maneuver
point hp moves forward.

3. The maneuver margin term
(h - hp) decreases,

4. The stick force gradient
decreases.

5. The forward and aft cg limits
move forward.

Increasing Chg and/or decreas-
ing Ch, by using a convex trailing
edge or a leading balance tab does
the following:

l. The free elevator factor, F,
increases.

2. The stigk-free maneuver
point hp moves aft.,



3. The maneuver margin term
(h - hp) increases.

4. The stick force gradient
increases.

5. The forward and aft cg limits
move aft.

B 4.9 cg RESTRICTIONS

The restrictions on the air-
craft's center of gravity location
may be examined by referrlng to the
mean aerodynamic chord in figure

4.10.

JF, dFy
Clax dn Mex dnMin Ny he M

!

] |
FWD -J \Jl
|

Figure 4,10 Restrictions to Center of Gravity Locations

The forward cg travel is
normally limited by:

1. Maximum stick-force-per-g
gradient - dFg/dn.

or

2. Elevator required to land at
CLMAX'

The aft cg travel is normally
limited by:

1. Minimum stick-force-per-g -

dFg/dn.
or
2. Stick-free neutral point-
power on - hp.

Additional considerations:

1. Freeing the elevator causes
a destabilizing moment that

locates the stick-free neutral

[
|
1 b =aer

and maneuver points ahead of
their respective stick-fixed
points.

2. The stick-free maneuver point,
hy, can be moved aft with a
bobwelght but not a down-
spring.

3. The desired aft cg locatien
may be unsatisfactory bhecause
it lies aft of the cg posi-
tion giving minimum stick
force gradient. The require-
ment for bobweight or a par-
ticular aerodynamic balancing
would exist in order to shift
the cg for minimum stick force
gradient aft of the desired
aft cg position.

The equations which pertain
to maneuvering flight are repeated
below:

Pull Ups, Stick-Fixed

Sc
hy = ho =P Cog (4.131)
dse a CL
—& - (h - h)
dn Cm, CL -cms a m
Be e (4.132)

Pull Ups, Stick-Free

v o o pSe
h'o= h! ,04 cqu (4,133)
dF W 1 '
s _ G(s C =) (=) (h - h')
Fraliie ( e Ce h(s)(S)(Cm(S m
e
(4,134)
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dF

S a

=6(s, «, cha)(g)(ﬁ)( h- by + W

dn b
Kobweight € (4.135)
Turns, Stick-Fixed
S¢ 1
h o= ho- ’OE Cmq (1 + nz) (4.136)
d&e a CL
T T T — < (h-hm)(4.l37)
My L m
o) s}
e e

4.18

Turnsg, Stick~-Free

n' = p' -P3C
m n 4m

dF
s

L

Cog (1 + 1/nd) F (4.138)

—2 =6(s, <, ch0_><§> (&) (h - h')

cmd
e

(4.139)
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BS5.1 INTRODUCTION

An analysis of the equations of aircraft motion leads to the follow-
ingy mathematical description of aircraft lateral-directional motion:

Fy = mv + mru - pwm {5.1)
G =PI, +ar(l, - L) - (r + paI,, (5.2)
G, = rl, +pa(l, - 1) + (ar - pl,, (5.3)

The (ight side of the equation represents the response of an aircraft to
applied forces and moments. The forces and moments are expressed on

the left side of the equation in terms of stability derivatives and small
perturbations. As in "Long-Stat", an analysis of the lateral-directional
static stability need only concern itself with the values of these deriva-
tives. Further analysis of the aircraft equations of motion reveals the
left side of the foregoing equations to be composed primarily of contribu-
tions from aerodynamic forces and moments, direct thrust, gravity, and gyro-
scopic meoments. Of these, only the aerodynamic forces and moments (Y,;f,?f)
will be analyzed because the other sources are usually eliminated through
proper design.

‘It has been shown in Chapter 1 that when operating under a small
disturbance assumption, aircraft lateral-directional motion can be con-
sidered independent of longitudinal motion and that it can be considered
as a function of the following variables:

iY;o‘C,”) =f(5r é, P, ., § 5r) (5.4)

al
The ensuing analysis is concerned with the question of lateral-direc-

tional static stability or the tendency of an airplane to return to sta-

bilized flight after being perturbed in yaw or roll. This will be deter-

mined by the values of the yawing and rolling moments (7 &L ). Since

the side force equation governs only the aircraft translatory response

and has no effect on the angular motion, the side force equation will not

be considered.

The two remaining aerodynamic functions can be expressed in terms
of non-dimensional stability derivatives, angular rates and angular dis-
placements:

7~ A A

L‘” = CHBB + CnéB + Cnpp + Cnrr + Cn\SaSa + cnﬁr\:r (5'5)
~ A~ A~

C, = CQBB + Cg’éﬁ + Cgpp + Czrr + ngaéa + Cy‘srér (5.9)
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The analysis of aircraft lateral-directional motion is based on
these two equations. A curscry examination of these equations reveals
the presence of "cross-coupling" terms, e.g., Cnpp and C"Gaéa in the

yawing moment equation (5.5). It is for this reason that aircraft lateral
motions and directional motions must be considered together - each one
influences the other.

Static directional stability will be considered first. Each stabil-
ity derivative in equation (5.5) will be discussed and its contribution
to aircraft stability will be analyzed. A summary of these stability
derivatives is shown in figqure 5.1.

SIGN FOR A
STABLE CONTRIBUTING PARTS
DERIVATIVE NAME AIRCRAFT OF AIRCRAFT
C.,(B Static Directional Stability +) Tail, Fuselage, Wing
or
Weathercock Stability
Cné Lag Effects ) Tail
C,Lp Cross-Coupling ) Wing, Tail
Clr Yaw Damping () Tail, Wing, Fuselage
Chs Adverse or Complimentary Yaw "o : Lateral Control
a or
.slightly
)
C Rudder Power +) Rudder Control
2By

Figure 5.1

W5.2 Cp.- STATIC DIRECTIONAL STABILITY OR WEATHERCOCK STABILITY

Static directional stability is defined as the initial tendency of
an aircraft to return to or depart from its equilibrium angle of sideslip
when disturbed. Although the static directional stability of an aircraft
is determined through consideration of all the terms in equation 5.5, Cug
is often referred to as "static directional stability" because it is
the predominant term.

When an aircraft is placed in a sideslip, aerodynamic forces develop
which create moments about all three axis. The moments created about the
Z axis tend to turn the nose of the aircraft into or away from the relia-
tive wind. The aircraft is statically directionally stable if the moments
created by a sideslip angle tend to align the nose of the aircraft with
the relative wind. By convention, sideslip angle is defined as positive
if the relative wind is displaced to the right of the fuselage reference
line.

5.2



RELATIVE
WIND

Figee 5.2

, Em Ligure ;5.2 the dircysre is in a right, sidéelip. " It 'is statically
BR3P ranta A Ay < Jnaee B SNy [ x=pge SRR T L IS ST NS PR -
stable .if it develops Nawing jgroments that tend jto,.3lign, it with the rela-
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tive wind, or, in this case, right (positive) Yawing moments. Therefore,

an aircraft is statically directionally stable if it develops positive
yawing moments with a positive increase in sideslip. Thus, the slope of

a plot of yawing moment coefficient, Cp, versus sideslip, 8, is a guantita-
tive measure of the static directional stability that an aircraft possesses.

This plot would normally be determined from wind tunnel results.




STABLE

R.W,

N
N\ ONSTABLE
N

Figure 5.3

WIND TUNNEL RESULTS OF YAWING
MOMENT COEFFICIENT vs SIDESLIP

The total value of the directional stability derivative, Cng, at any

sideslip angle, is determined by contributions from the vertical tail, the
fuselage, and the wing. These contributions will be discussed separately.

@5.2.1 VERTICAL TAIL CONTRIBUTION TO cnﬁ:

The vertical tail is the primary source of directional stability for
virtually all aircraft. Wwhen the aircraft is yawed, the angle of attack
of the vertical tail is changed. This change in angle of attack produces

a change in 1ift on the vertical tail, and thus a vyawing moment about the
Z-axis. '
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Referring to figure 5.4, the yawing moment produced by the tail is:

np = (=) (-Lgp) = 2.Lg (5.7)
The minus signs in this equation arise from the use of the sign
convention adopted in the study of 'aircraft equations of motion. Forces

to the left and distances behind the aircraft cg are negative.

As in other aerodynamic considerations, it is convenient to consider
yawing moments in coefficient form so that static directional stability
can be evaluated independent of weight, altitude and speed. Putting equa-
tion 5.7 in coefficient form:

Cnp = EEEEL—- = iEEEfoELjﬁi {5.8)
F qwswbw qwswbw
Vertical tail volume ratio, Vy, is defined as:
St
. EFF .
Vv T 55 (5.9)
wow

The sign of Vy may be either positive or negative. Making this substitu-
tion in equation 5.8:

_CLp I Yy (5.10)
F qw *

For a propeller-driven aircraft, Qy is greater than qp. However, for a
jet aircraft, these two quantities are equal. Thus, for a jet aircraft,
equation 5.10 becomes:

Cn

Cnp = CLp Yy (5.11)

The 1ift curve for a vertical tail is presented in figure 5.5,

CLF

aF

Figre 5.5 LIFT CURVE FOR A VERTICAL TAIL




The negative slope of this curve is a result of the sign convention used.
Reference figure 5.4. When the relative wind is displaced to the right
of the fuselage reference line, the vertical tail is placed at a positive
angle of attack. However, this results in a 1lift force to the left, or

a negative lift. Thus, the sign of the lift curve slope of a vertical
tail, ap, will always be negative below the stall.

CLp = 3 %p ‘ (5.12)
Making this substitution in equation 5.11:

a, V (5.13)

The angle of attack of the vertical tail, ap, is not merely 8., 1If
the vertical tail were placed alone in an airstream, the ap would be equal

to 8. However, when the tail is installed on an aircraft, changes in
both magnitude and direction of the local flow at the tail take place.

These changes may be caused by a propeller slipstream, or by the wing and
the fuselage when the airplane is yawed. The angular deflection is allowed
for by introducing the sidewash angle, o, analogous to the downwash angle,
€. The value of o is very difficult to predict, therefore suitable wind
tunnel tests are required. The sign of ¢ is defined as positive if it
causes ap to be less than 8. Thus,

g = B = ep (5.14)

Substituting in equation 5.13:
CnF=a

Ve (8 - o) (5.15)

The contribution of the vertical tail to weathercock stability is
found by examining the change in C"F with a change in sideslip angle, 8.

3Ch
F _ - - 3¢9
75 = |Cng v, ap (1 =5 (5.16)

(Tail) Fixed

The subscript "fixed" is added to emphasize that, thus far, the ver-
tical tail has been considered as a surface with no movable parts, i.e.,
the rudder is "fixed."

Equation 5.16 reveals that tne vertical tail contribution to direc-
tional stability can only be changed by varying the vertical tail volume
ratio, Vy, or the vertical tail lift curve slope, ap. The vertical tail
volume ratio can be changed by varying the size of the vertical tail, or
its distance from the aircraft cg. The vertical tail lift curve slope
can be changed by altering the basic airfoil section of the vertical tail,
or by end plating the vertical fin. An end plate on the top of the ver-
tical tail is a relatively minor modification and yet it increases the
directional stability of the aircraft significantly. This fact has been
utilized in the case of the T-38 (figure 5.6). As can be seen in figure
5.7, the entire stabilator on the F-104 acts as an end plate and, there-
fore, adds greatly to the directional stability of the aircraft.
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Figure 5.6 Figure 5.7

The effect of an end plate on the vertical stabilizer is to increase
the effective aspect ratio of the vertical tail. As with any airfoil,

this change in aspect ratio produces a change in the 1lift curve slope of
the airfoil.

ar

J 8
INCREASING

As the aspect ratio is increased, the ap for stall is decreased. Thus,
if the aspect ratio of the vertical tail is too high, the vertical tail

will stall at low sideslip angles and a large decrease in directional
stability will occur.
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@5.2.2 FUSELAGE CONTRIBUTION TO C“ﬂ:

The subsonic center of pressure of a typical fuselage occurs about
one-fourth of the distance back from the nose. 8Since the aircraft center
of gravity usually lies behind this point, the fuselage is generally de-
stabilizing.

R.W.

FY (FUSELAGE)

Figure 5.8

As can be seen from figure 5.8, a positive sideslip angle will pro-

duce a negative yawing moment about the cg, thus, Cj, is negative

(fuselage)
or destabilizing. The destabilizing influence of the fuselage diminishes
at large sideslip angles due to a decrease in lift as the fuselage stall
angle of attack is exceeded, and also due to an increase in parasite drag
acting at the center of equivalent parasite area which is located aft of
the cg.

If the overall directional stability of an aircraft becomes too low,
the fuselage-tail combination can be made more stabilizing by adding a
dorsal fin or a ventral fin. A dorsal fin was added to the C-123 and
a ventral fin was added to the F-104 to improve static directional sta-
bility.



Figure 5.9

Since the addition of a dorsal fin decreases the effective aspect
ratio of the tail, a higher sideslip angle can be attained before the
vertical fin will stall. However, the major effect of the dorsal fin at
large sideslip angles is to move the center of equivalent parasite area
further aft of the cg, therefore producing a greater stabilizing moment
at any given sideslip angle. Thus, a dorsal fin greatly increases direc-
tional stability at large sideslip angles. Figure 5.10 shows the effect
on directional stability of adding a dorsal fin.

Cn TAlL . — AIRPLANE ¥ITH
ALONE —= - DORSAL FIR ADDED
—
//
- COMPLE'E
= AIRPLANE
g

FUSELAGE
ALONE

Figwe 510 EFFECT OF ADDING A DORSAL FIN




C"B(fuselage) is difficult to estimate, and although some empirical
formulas exist, it is usually measured directly by wind tunnel tests using

a model withcut a tail.
©5.2.3 WING CONTRIBUTION TO Cng‘

The wing contribution to static directional stability is usually
small. Straight wings make a slight positive contribution to static
directional stability due to fuselage blanking in a sideslip. Effectively,
the relative wind "sees” less of the downwind wing due to fuselage blank-
ing. This reduces the 1lift of the downwind wing, and thus reduces the
induced drag on the downwind wing. The difference in induced drag on the
two wings tends to yaw the aircraft into the relative wind.

Swept back wings produce a greater positive contribution to static
directional stability than do straight wings.

Reference figure 5.11. The wing sweep angle, A is defined as the
angle between a perpendicular to the fuselage reference line and the guar-

ter chord line of the wing.

+8

YNORMAL

Figure 511
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It can be seen that the component of free stream velocity normal to the
wing is greater for swept back wings than for straight wings, and that
is also greater on the upwind wing.

VN(Upwind) = Vp cos (A = 8) (5.17)

VN(Downwind) = Vp cos (2 + 8) (5.18)

This difference in normal components creates a dissimilance of 1lift and
therefore a disparity in induced drag on the two wings. Thus a stabiliz-
ing yawing moment is created. Similarly, forward swept wings would create
an unstable contribution to static directional stability.

©@5.2.4 MISCELLANEOUS EFFECTSON Cpj5 ¢

A propeller can have large effects on an aircraft's static direction-
al stability. The propeller contribution to directional stability arises
from the side force component at the propeller disc created as a result
of yaw (figure 5.12)

RW.

Figure 5.12
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The propeller is destabilizing if a tractor and stabilizing if a pusher.
Similarly, engine intakes have the same effects if they are located fore

or aft of the aircraft cg.

Engine nacelles act like a small

fuselage and can be stabilizing or

destabilizing depending on whether their cp is located ahead or behind the

cqg.

Aircraft cg movement is restricted by longitudinal static stability

considerations.

However, within the relatively narrow limits established

by longitudinal considerations, cg movements have no significant effects

on static directional stability.

6.3 Cns, — RUDDER POWER

In most flight conditions, it is
angle equal to zero. If the aircraft
and is symmetrical, then it will tend

desired to maintain the sideslip
has positive directional stability
to fly in this condition. However,

yawing moments may act on the aircraft as a result of asymmetric thrust

(one engine inoperative), slip stream
field associated with turning flight.
angle can be kept to zero only by the
The control that provides this moment

rotation, or the unsymmetric flow
Under these conditions, sideslip
application of a control moment.
is the rudder.

Recall that,

Cnp = ap ap V (5.13)
iCp aC da
F n F
—_— = = a_ V (5.19)
36, 38 F v 38
Defining rudder effectiveness, 7, as:
Ja
T = & (5.20)
38
r
acn
.3_6; = Cndr = agp Vv T (5.21)

The derivative, Cpg,., is called "rudder power" and by definition, its
algebraic sign is always positive. This is because a positive rudder
deflection, +8, is defined as one that produces a positive moment about
the cg, +C;. The magnitude of the rudder power can be altered by varying
the size of the vertical tail and its distance from the aircraft cg, or
by using different airfoils for the tail and/or rudder, or by varying the
size of the rudder.

5.4 RUDDER FIXED STATIC DIRECTIONAL STABILITY

Having some knowledge of both CnB and Cnér, it is now possible to
work toward some relationship that can be used in flight to measure the
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static directional stability of the aircraft. 1In flight, the maneuver
that will be used to determine the static directional stability of the
aircraft is the "steady straight sideslip." 1In a steady straight side-
slip, equation 5.5 reduces to,

CnBB + Cnsaéa + Cnérdr =0 (5.22)
Thus,
Cn Cn5
8 a
6 = e cm— - ' (5.23)
r C C a
sy hér
C
EEE - . _'B(Fixed) (5.24)
3B Cn<S °
r

Again, the subscript "fixed" is added as a reminder that equation 5.24 is
an expression for the static directional stability of an aircraft if the
rudder is not free to float. Looking at equation 5.24, Cndr is a known

quantity once an aircraft is built, therefore, 35y/38 can be taken as a
direct indication of the rudder fixed static directional stability of an
aircraft. The relationship, 36,./38, can easily be measured in flight.
Since Cng has to be positive in order to have positive directional sta-
bility, and Cnér is positive by definition, 36,/38 must be negative to
obtain positive directional stability.

8, UNSTABLE

STABLE

Figure 5.13 RUDOER DEFLECTION vs SLIDESLIP
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W55 RUDDER FREE DIRECTIONAL STABILITY

On aircraft with reversible control systems, the rudder is free to
float in response to its hinge moments, and this floating can have large
effects on the directional stability of the airplane. 1In fact, a plot of
36,/38 may be stable while an examination of the rudder free static direc-
tional stability reveals the aircraft to be unstable. Thus, if the rudder
is free to float, there will be a change in the tail contribution to static
directional stability. To analyze the nature of this change, recall that
hinge moments are produced by the pressure distribution caused by angle
of attack and control surface deflection. In the case of the rudder,

o 3H oH
m m .
By = WAt 3 %F T EE, Or (5.25)

In coefficient form

Ch = Cha * ap + ChSr * b5y (5.26)

F

It can be seen that when the vertical tail is placed at some angle
of attack, op, the rudder will start to "float." However, as soon as it
deflects, restoring moments are set up, and an equilibrium floating angle
will be reached where the floating tendency is just balanced by the re-
storing tendency and Ch, = 0. At this point,

Chyp © ®F = 7 Chs * fr(ricat) (5.27)
Thus,
Ch
’ - 5L (5.28)
"I'(Float) Ch. °F .
-

With this background, it is now possible to develop a relationship
that expresses the static directional stability of an aircraft with the
rudder free to float.

Recall that,

C”F =V a_ a (5.13)

= g -9+ —2 3 (5.29)

Ju

L5 {5.30)
E T (Float)

Cp. =V, a, |8~ o +
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3CnF

38
30 '(Float)
Ch = =V _ a, |l -3+ 7 ——220 (5.31)
B(Free) 3B v F a8 B
Cn =v a l1 -3V, (1 +T °r (Float) | _1 (5.32)
8(rree) V T ) 38 1 - g_g_ :
From egquation 5.14,
da
F _ ag
5 = 1 - = (5.33)
Cn cv a1 - 2] (147 ZBE(Float) | 28 (5.34)
B(Free) v F 3B 3B aaF *
EXS
_ 3o T(Float)
Cn =V _a 1 = =—j « |1 + 7 —————==2 (5.35)
B(Free) v F 38 aQ‘I"
Recall that,
Cha
- - _F
8r(Float)™ ~ T, °F (5.28)
Sr .
Therefore,
< C
r(rloat)_ _ _oF (5.36)
aaF Chdr ‘
Thus,
Ch
ac\ ap
Cn =V a 1 = —} ¢« |1 ~T (5.37)
8 (Free) v F E } hs,

It can be seen that this expression differs from equation 5.16,
the expression for rudder fixed static directional stability by the term
(L - 7 ChGF/ChGr)' Since this term will always result in a quantity less

than one, it can be stated that the effect of rudder float is to reduce
the slope of the static directional stability curve,
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Figure 5.14

Equation 5.37 does not contain parameters that are easily measured
in flight, therefore it is necessary to develop an expression that will
be useful in flight test work.

Assuming a steady straight sideslip, figure 5.15 schematically repre-
sents the forces and moments at work.

7T HINGE PIN

Figure 5.15

In a steady straight sideslip, I = 0. Therefore, it follows that
ZnHinge Pin ~ 0. Now if moments are summed about the rudder hinge pin,

the rudder force exerted by the pilot, FR, acts through a moment arm and
gearing mechanism, both accounted for by some constant, K, and must balance
the other aerodynamic yawing moments so that aninge Pin = 0. The pilot

is hindered in his task by the fact that the rudder floats. Thus, in
steady straight flight,
&

=0 =F, - K + Hy, (5.38)

Hinge Pin r

pr = -G - Hy, (5.39)

Where G is merely 1/K.
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Knowing,

S_c¢ (5.40)

From equation 5.26,

H = q Sr c_. (Ch ©ap + Chér + 6y) (5.41)

r GF

Thus, equation 5.39 becomes,

Fr = - qu sr <. (ChaF . ap + Chsr . &) (5.42)

Applying egquation 5.27,

F
r

i

- qu sr “r (_Chdr ’ dr(Float)+ Chér " Sy (5.43)

(5.44)

1
]

r - " % Sp Chsr (5p - Gr(Float))

The difference between where the pilot pushes the rudder, §,, and the
amount it floats, 6r(Float)’ is the free position of the rugder, Gr(Free)

Therefore,

Fr = - qu Sr C, Chér Gr(Free) (5.45).
aF 3syp

r _ _ . (Free) .
58 -~ " 9 Sp ¢ Cng 38 (5.46)

From equation 5.24, it can be shown that,

Cn
a‘sr(Free) . 8 (Free)
= - (5.47)
a8 Cnér
Thus,
Ch
aFr 6r

— =Ggq_ S_c_ =——Cp (5.48)
3B r r r Cn5r B(Free)
This equation shows that the parameter, 3F /38, can be taken as an

indication of the rudder free static directional stability of an aircraft.
This parameter can be readily measured in flight.

An analysis of the components of equation 5.48 reveals that for
static directional stability, the sign of 3F,./38 should be negative.
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Figure 5.16

WEE Cp;, - YAWING MOMENT DUE TO LATERAL CONTROL DEFLECTION

The remaining derivatives in equation 5.5 that have not been studied
thus far are called "cross derivatives." It is the existence of these
cross derivatives that causes the rolling and yawing motions to be so
closely coupled,

The first of these cross derivatives to be covered will be C,;s , and

is the yawing moment due to lateral control deflection. In order for a
lateral control to produce a rolling moment, it must create an unbalanced
lift condition on the wings. The wing with the most lift will also pro-
duce the most induced drag according to the equation Cp; = CLz/ne R .
Also, any change in the profile of the wing due to a lateral control de-
flection will cause a change in profile drag. Thus, any lateral control
deflection will produce a change in both induced and profile drag. The
predominate effect will be dependent on the particular aircraft configura-
tion and the flight condition. If induced drag predominates, the aircraft
will tend to yaw away from the direction of roll. This phenomencon is
known as "adverse yaw." The sign of Cnéa for adverse yaw is negative.

If profile drag predominates, the aircraft will tend to yaw into the direc-
tion of roll. This is known as "complimentary" or "proverse" yaw. The
sign of Cnda for complimentary yaw is positive. Both ailerons and spoilers
are capable of producing either adverse or complimentary yaw. To determine
which condition will prevail, the particular aircraft configuration and
rlight condition must be analyzed. If design permits, it is desirable to
have Cpg_ = 0 or be slightly positive. A slight positive value will ease
the pilot's turn coordination task.
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| 1% Cap ~ YAWING MOMENT DUE TO ROLL RATE

The derivative Cnp is called yawing moment due to roll rate. Both

the wing and the tail contribute to Cnp. The wing contribution arises
from two sources. The first comes from the change in profile drag asso-
ciated with the change in wing angle of attack due to rolling. As an
aircraft is rolled, the angle of attack on the downgoing wing is increased.
Refer to figure 5.17. Conversely, the angle of attack on the upgoing wing
is decreased.

COMPONENT OF RELATIVE WIND CAUSED BY ROLLING YELOCITY

YT (ORIGINAL)

4

RELATIVE WIND"

Figure 5.17

This increase in angle of attack on the donwgoing wing means that
the relative wind "sees" more of the downgoing wing and that therefore
the profile drag will be greater on this wing than on the upgoing wing.
For the right roll depicted in figure 5.17, the increased profile drag
would cause a yaw to the right. Thus, the sign of Crnp due to this effect
only is positive. However, the second wing effect is predominant and the
foregoing effect exerts only a mitigating influence.

The local 1lift vector is always perpendicular to the local relative
wind. As already discussed, the inclination of the relative wind is
difference on the wings during a roll. Thus, there will be a difference
in the inclination of the two wing lift vectors. The lift vector on the
downgoing wing will be tilted forward, and the lift vector on the upgoing
wing will be tilted aft. Refer to figure 5.18.

Since each 1ift vector has a component in the X-direction, a vawing
moment will result. In the case depicted, for a right roll the yaw will
be to the left. Thus, the sign of Cnp due to this effect will be negative.
As previously mentioned, this is the predominate wing effect and thus,
overall, the sign of the wing contribution to Cnp is negative.
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Figure 5.18 INCLINATION OF WING LIFT VECTORS DURING A RIGHT ROLL

The vertical tail makes a larger contribution to Cp, than does either

wing effect. Rolling changes the angle of attack on the vertical tail.
Refer to figure 5.19.

Figure 519  CHANGE IN ANGLE OF ATTACK OF THE VERTICAL TAIL DUE TO A RIGHT ROLL RATE

5.20



This change in angle of attack on the vertical tail will generate
a 1ift force. In the situation depicted in figure 5.19, the change in
angle of attack will generate a 1ift force, Lp, to the left. This will

create a positive yawing moment. Thus, Cnp for the vertical tail is
positive.

Considering both wing and tail, a slight positive value of Cp, is
desired to aid in Dutch roll damping. p

B5.8 Cn, YAW DAMPING

The derivative Cpp, is called yaw damping and, by definition, its
sign is always negative. The aircraft fuselage adds a negligible amount
to Cny except when it is very large. The important contributions are
those of the wing and tail.

The tail contribution to Cp, arises from the fact that there is a
change in angle of attack on the vertical tail whenever the aircraft is
yvawed. This change in oF produces a lift force, LF, that in turn produces

a yawing moment that opposes the original yawing moment. Refer to figure
5.20. The tail contribution to Cp, accounts for 80-90% of the total "yaw
damping” on most aircraft.

The wing contribution to Cn, arises from the fact that in a yaw, the
outside wing experiences an increase in both induced drag and profile drag
due to the increased dynamic pressure on the wing. An increase in drag
on the outside wing creates a yawing moment that opposes the original
direction of yaw.

W53 Cpl- YAW DAMPING DUE TO LAG EFFECTS IN SIDEWASH

The derivative Cng is yaw damping due to lag effects in sidewash, o.
Very little can be authoritatively stated about the magnitude or algebraic
sign of Cng due to the wide variations of opinion in interpreting the
experimental data concerning it.
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Figure 5.20

CHANGE IN ANGLE OF ATTACK OF
VERTICAL FIN DUE TO YAWING RATE

During any change in B, the angle of attack of the vertical fin will
always be less than it will be at steady state. This is due to lag effects
in sidewash. Since this phenomenon reduces the angle of attack of the
vertical tail, it also reduces the yawing moment created by the vertical
tail. This reduction in yawing moment is, effectively, a contribution to

vaw damping. Thus the description, "yaw damping due to lag effects in
sidewash."

B 5.10 HIGH SPEED ASPECTS OF STATIC DIRECTIONAL STABILITY

Cng - The effectiveness of an airfoil decreases as the velocity in-
creases supersonically. Thus, for a given 8, as Mach increases, the re-

storing moment generated by the tail diminishes. The wing-fuselage combi-
nation continues to be destabilizing throughout the flight envelope. Thus,
the overall Cns of the aircraft will decrease with increasing Mach.
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Figwe 5.21 CHANGE IN Gr;B WITH MACH NUMBER

The requirement for large values of Cng is compounded by the tendency
of high speed aerodynamic designs toward divergencies in yaw due to roll
coupling effects. This problem can be combated by designing an extremely
large tail (F-104, F-111, T-38), by endplating the tail (F-104, T-38), by
using ventral fins (F-104), or by using fore body strakes.

The F-104 employs a ventral fin in addition to a sizeable vertical
stabilizer to increase supersonic directional stability. The efficiency
of underbody surfaces is not affected by wing wake at high angles of
attack, and supersonically, they are located in a high energy compression
pattern.

Fore body strakes located radially along the horizontal center line
in the x-y plane of the aircraft have also been employed effectively to
increase directional stability at supersonic speeds. This increase in
C”B by the employment of strakes is a result of a more favorable pressure
distribution over the fore body surface, and in addition, the creation
of improved flow effects at the vertical tail location by virtue of dimin-
ished flow circulation. In addition, even small sideslip angles will pro-
duce fuselage blanking of the downwind strake and create a dissimilance
of induced drag, and thus a stable contribution to Cpy.

Cng, - In the transonic region, flow separation will decrease the
effectiveness of any trailing edge control surface. On most aircraft
however, this is offset by an increase in the Cr, curve in the transonic
region. As a result, flight controls are usually the most effective in
this region. However, as Mach number continues to increase, the Cp, curve
will decrease, and thus, control surface effectiveness will continue to
decrease. 1In addition, once the flow over the surface is supersonic, a
trailing edge control cannot influence the pressure distribution on the
surface itself, due to the fact that pressure disturbances cannot be
transmitted forward in a supersonic environment. Thus, the rudder power
will decrease as Mach increases above the transonic region.

Cung. — For the same reasons discussed under rudder power, a given
aileron geflection will not produce as much lift at high Mach number as
it did transonically. Therefore, induced drag will be less. In addition,
the profile drag, for a given aileron deflection, increases with Mach num-
ber. Thus, the tendency toward complimentary yaw increases with Mach.
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Cny - The development of yaw damping depends on the ability of the
wing and tail to develop lift. Thus, as Mach number increases and the
ability of all surfaces to develop lift decreases, yaw damping will also
decrease.

Cnp - The slope of a curve of Cng normally doesn't change with Mach
a

number. However, the magnitude of attainable roll rate will decrease
with decreasing aileron effectiveness. Therefore, the magnitude of Cnp
encountered at higher Mach numbers will normally be less.

cné - This derivative normally will not change with Mach number.

@5.11 STATIC LATERAL STABILITY

The analysis of aircraft lateral static stability is based on equa-~
tion 5.6, which is repeated here for reference.

| +~ A ~ |
Cp = Cogd + Cogf +Cop+ Coxr + Cig %a * Cay oz (5.6)

It can be seen that the rolling moment, C;, is not a function of bank
angle, 9. In other words, a change in bank angle will produce no change
in rolling moment. In fact, ¢ produces no moment at all. Thus, Cgp, = 0,

and although it is analogous to Cma and Cpg, it contributes nothing to
the lateral static stability analysis.

Bank angle, ¢, does have an indirect effect on rolling moment. As
the aircraft is rolled into a bank angle, a component of aircraft weight
will act along the Y-axis, and will thus produce an unbalanced force.
Refer to figure 5.22., This unbalanced force in the Y direction, Fy, will
produce a sideslip, 8, and as seen from equation 5.6, this will influence
the rolling moment produced. .

FY = Wsin¢

Figue 5.22 SIDE FORCE PRODUCED BY BANK ANGLE
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Each stability derivative in .equation 5.6 will be discussed and its
contribution to aircraft stability will be analyzed. A summary of these
stability derivatives follows:

SIGN FOR A STABLE | CONTRIBUTING PARTS

DERIVATIVE NAME AIRCRAFT OF ATIRCRAFT

CIB Dihedral Effect ) Wing, Tail

Clé 4 due to B (+) Wing, Tail

Clp Roll Damping ) Wing, Tail

Cl,r CZ c!ue to Yaw Rate _ +) Wing, Tail

Cls Lateral Control Power ) Lateral Control

a
C"’BI C.l due to Rudder Deflection (-) Rudder
Figure 5.23

m5.12 c%— DIHEDRAL EFFECT

The tendency of an aircraft to fly wings level is related to the
derivative Ceg which is known as "Dihedral Effect." Although the static

lateral stability of an aircraft is a function of all the derivatives in
equation 5.6, Ceg is the predominant term. Therefore, static lateral

stability is often referred to as "Stable Dihedral Effect."
An aircraft has stable dihedral effect if a positive sideslip produces

a negative rolling moment. Thus, the algebraic sign of CgB must be nega-
tive for stable dihedral effect.

c2

e UNSTABLE

STABLE

Figure 5.24 WIND TUNNEL RESULTS UF ROLLING MOMENT COEFFICIENT vs SIDESLIP
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It is possible to have too much or too
values of dihedral effect give good spi

has a large amount of positive dihedral effe

up a

amount of sideslip wil

wing with top rudder. This also means

ing to the pilot. This is known as a high ¢

aircraft, an engine

If the aircraft has a great deal of dihedral
an excessive amount of aileron force and deflection to overcome the rolling
moment due to sideslip. Still another detri
dihedral effect may be encountered when the pilot rolls an aircraft. If
an aircraft in rolling to the right tends to yaw to the left, the result-

ing right sideslip,
ing moment to the left.

roll

effect, but not too much.

merel

class

5.26.

5.26

rate available. The pilot, then wants

little dihedral effect.

ral stability. If an aircraft
ct, the pilot is able to pick
that in level flight a small

1 cause the aircraft to roll and this can be annoy-

/8 ratio. In multi-engine

failure will normally produce a large sideslip angle.

effect, the pilot must supply

mental effect of too much

together with stable dihedral effect, creates a roll-
This effect could materially reduce the maximum

a certain amount of dihedral

The end result is usually a design compromise.

Both the wing and the tail exert an influence on Cig. The various
effects on Cig can be classified as "direct" or "indirect." A direct
effect actually produces some increment of Cgg while an indirect effect

y alters the value of the existing Cig.

The discrete wing and tail effects that will be considered are

ified as follows:

Effects on Qéb

DIRECT
| Geometric Dihedral
Wing Sweep
§ Wing-Fuselage Interference

Vertical Tail

Figure 5.25

INDIRECT

Aspect Ratio
Taper Ratio
Tip Tanks

Wing Flaps

Geometric dihedral, v, is defined as positive when the chord lines
of the wing tip are above those at the wing root. To understand the
effect of geometric dihedral on static lateral stability, consider figure



VT sinBsinY

Figure 5.26b

~——————————
Aa

Y1 sin ,B-In’y

Figure 5.26¢

Figure 5.26a

It can be seen that when an aircraft is placed in a sideslip, posi-
tive geometric dihedral causes the component, Vg sin 8 sin y to be added
to the lift producing component of the relative wind, Vr cos 8. Thus,
geometric dihedral causes the angle of attack on the upwind wing to be
increased by 4a.

VT sin B sin vy
tan Aa = VT o5 = tan B sin vy (5.49)

Making the small angle assumption,

Aa = tan B8 sin y (5.50)
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Conversely, the angle of attack on the downwind wing will be reduced.
These changes in angle of attack tend to increase the 1ift on the upwind
wing and decrease the lift on the downwind wing, thus producing a roll

away from the sideslip. In figure 5.26, for
+8, will increase the angle of attack on the
producing a roll to the left. Therefore, it
produces a stable, or negative, contribution

@5.12.1 WING SWEEP:

example, a positive sideslip,
upwind, or right, wing, thus
can be seen that this effect
to Czs.

The wing sweep angle, A, is measured frcm a perpendicular to the

aircraft x-axis at the forward wing root, to
cord points of the wing. Wing sweep back is

a line connecting the quarter
defined as positive.

Aerodynamic theory shows that the lift of a yawed wing is determined

by the component of the free stream velocity

normal to wing. That is,

L =Cg 1/2 oVst where, Vy is the normal velocity.

ANGLE=A-8

RELATIVE WIND

Figure 521 EFFECT OF WING SWEEP ON CQB
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It can be seen from figure 5,27 that on a swept wing aircraft, the
normal component of free stream velocity on the upwind wing is,

VN = Vp cos (A - B) (5.51)

Conversely, on the dowpwind wing,

VN = VT cos (A + B) (5.52)

Therefore, VN will be greater on the upwind wing. This will cause the
upwind wing to produce more lift and will thus create a roll away from
the direction of the sideslip. In other words, a right sideslip will
produce 4 roll to the left. Thus, wing sweep makes a stable contribution
to CQB and produces the same effect as geometric dihedral.

To fully appreciate the effect of wing sweep on static lateral sta-
bility, it will be necessary to develop an equation relating the two.

_ ] 2
L(Upwind Wing) L 3 1/2 *Vy (5.53)
s 2
L (Upwind Wing) = L 3 1/2 p|Vy cos (A = 8) (5.54)
S 2 S 2
AL = Cp, 5 1/2 p[VT cos (A - B)] -CL 3 1l/2 p[vT cos (A + B)] (5.55)
AL = Cyp, % 1/2 o VT2 [cos2 (A - 8) - cos2 (A + B)] (5.56)
Applying a trigonometric identity,
2 2 1 . .
cos™ (A - B) - cos® (A + 8)| = sin 2 A sin 2 8 (5.57)
J
Making the assumption of a small sideslip angle,
[cos2 (A - 8) - cos2 (A +8)]| = 2 B sin 2 A (5.58)

Therefore, equation 5.56 becomes,

2 2 B sin 2 A = C, S1/2 o Vv 2

T B8 sin 2 A (5.59)

L =cp £1/2 0 vy

The rolling moment produced by this change in lift is,

jl =-AL -Y (5.60)
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Where Y is the distance from the wing cp to the aircraft cg. The minus
8ign arises from the fact that equation 5.59 assumes a positive sideslip,
+#, and for an aircraft with stable dihedral effect, this will produce a
negative rolling moment.

L ' (5.61)

C -
b3 qwswbw
?cLsvaZSSinZA cLYe
Cl = > = - —7;——~sin2A (5.62)
P Vp Sb

aC _
Ty _ Y . - , -
= = Czs = -5 Cp sin 2 A= CONST (Cp, sin2a) (5.63)

Where the constant will be on the order of 0.2. Equation 5.63 should not
be used above . = 45° because highly swept wings are subject to leading
edge separation at high angles of attack, and this can result in reversal
of the dihedral effect. Therefore, it's best to use empirical results
above & = 45°,

from equation $.63, it can be seen that at low speeds, high Cg,
sweeplback makes a large contribution to stable dihedral effect. However,
at hiigh speeds, low (1, sweepback makes a relatively small contribution
to stable dihedral etfect.

For angles of sweep on the order of 45°, the wing sweep contribution
to C.. may be on the order of - 1/5 C;. For large values of Cp, this is
a very large contribution, equivalent tc nearly ten degrees of geometric
dihedral. At vary high angles of attack, such as during landing and
takeoff, this effect can be very helpful to a swept wing fighter encounter-
ing downwash.

Since the effect of sweepback varies with Cj, becoming extremely
small at high speeds, it can help keep the proper ratio of Cig to Cuy at
high speeds and reduce poor Dutch roll characteristics at these speeds.

5.12.2 WING ASPECT RATIO:

The wing aspect ratio exerts an indirect effect on dihedral effect.
On a high aspect ratio wing, the center of pressure is further from the
cg than on a low aspect ratio wing. This results in high aspect ratio
pPlanforms having a longer moment arm and thus, greater rolling moments
for a given isymmetric lift distribution. Refer to figure 5.28. It
should be noted that aspect ratio, in itself, does not create dihedral
effect, but that it merely alters the magnitude of the existing dihedral
effect.
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4R 16

DIHEDRAL
SEMISPAN

Figure 5.28

CONTRIBUTION OF ASPECT
RATIO TO DIHEDRAL EFFECT.

@5.12.3 WING TAPER RATIO:

Taper ratio, A, is a measure of how fast the wing chord shortens.
Taper ratio is the ratio of the tip chord to the root chord. Therefore,
the lower the taper ratio, the faster the chord shortens. On highly
tapered wings, the center of pressure is closer to the aircraft cg than
on untapered wings. This results in a shorter moment arm and thus, less
rolling moment for a given asymmetric lift distribution. Refer to figure
5.29. Taper ratio does not create dihedral effect, but merely alters
the magnitude of the existing dihedral effect. Thus it has an "indirect"
effect on dihedral effect.

ng A=1.0—==
4 A= 0.25
. DIHEDRAL
SEMISPAN

Figure 5.29 CONTRIBUTION OF TAPER RATIO TO DIHEDRAL EFFECT
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@5.12.4 TIP TANKS

Tip tanks, pyloh tanks and other external stores will generally exert
an indirect influence on Ceg. Adding external stores creates an end-plat-
ing effect on the wing, and this, in turn, alters the effective aspect
ratio of the wing. The effect of a given external store configuration
is hard to predict analytically, and it is usually necessary to rely on
empirical results. To illustrate the effect of various external store
configurations, data for the F~80 is presented in figure 5.30. The data
is for a clean F-80 230 gallon centerline tip tanks, and 165 gallon under-
slung tanks. This data shows that the centerline tanks increase dihedral
effect while the underslung tanks reduce stable dihedral effect consider-

ably.

g

\UNDE RSLUNG TANKS

3

NQ TANKS

CENTERLINE TANKS

Figure 5.30 EFFECT OF TIP TANKS ON C2p OF F-80

@5.12.5 PARTIAL SPAN FLAPS:
Partial-span flaps indirectly exert a detrimental effect on static
lateral stability. Refer to figure 5.31.

AL DUE TO DIHEDRAL
EFFECT

T

Figure 5.31a WING LIFT DISTRIBUTION, NO FLAPS
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AL DUE TO
DIHEDRAL EFFECT

Figure 531b WING LIFT DISTRIBUTION, FLAPS EXTENDED

Partial-span flaps shift the center of 1lift of the wing inboard, reducing
the effective moment arm Y. Therefore, although the wvalues of AL remain
the same, the rolling moment will decrease. The higher the effectiveness
of the flaps in increasing the l1ift coefficient, the greater will be the
change in span lift distribution and the more detrimental will be the
effect of the flaps. Therefore, the decrease in lateral stability due

to flap deflection may be large.

Deflected flaps cause a secondary variation in the effective dihedral
that depends on the planform of the flaps themselves, If the shape of
the wing gives a sweepback to the leading edge of the flaps, a slight posi-
tive dihedral effect results when the flaps are deflected. If the leading
edge of the flaps are swept forward, flap deflection causes a slight nega-
tive dihedral effect. These effects are produced by the same phenomenon
that produced a change in Cgg with wing sweep. The effect of flap platform
on CQB is generally small.

@5.12.6 WING -~ FUSELAGE INTERFERENCE :

Of the various interference effects between parts of the aircraft,
probably the most important is the change in angle of attack of the wing
near the root due to the flow pattern about the fuselage in a sideslip.
To visualize the change in angle of attack, refer to figure 5.32.

— %/-\% — — — HiGH WING
%__ LOW WING

Flgure 532 INFLUENCE OF WING — FUSELAGE INTERFERENCE ON C:s

)

(U
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The fuselage induces vertical velocities in a sideslip which, when com-
bined with the mainstream velocity, alter the local angle of attack of the
wing. When the wing is located at the top of the fuselage (high~-wing),
then the angle of attack will be increased at the wing root, and a posi-
tive sideslip will produce a negative rolling moment: i.e., the dihedral
effect will be enhanced., Conversely, when the aircraft has a low wing,
the dihedral effect will be diminished by the fuselage interference.
Generally, this explains why high-wing airplanes often have little or no
geometric dihedral, whereas low-wing aircraft may have a great deal of
geometric dihedral.

@5.12.7 VERTICAL TAIL:

When an aircraft sideslips, the angle of attack of the vertical tail
is changed. This change in angle of attack produces a lift force on the
vertical tail. If the center of pressure of the vertical tail is above
the aircraft cg, this 1ift force will produce a rolling moment. Refer
to figure 5.33.

Figure 5,33 ROLLING MOMENT CREATED BY VERTICAL TAIL AT A POSITIVE ANGLE OF SIDESLIPE

In the situation depicted in figure 5.33, the negative rolling moment
was created by a positive sideslip angle, thus, the vertical tail con-
tributes a stable increment to dihedral effect. This contribution can
be quite large. In fact, it can be the major contribution to Cig on air-
craft with large vertical tails such as the F-104 and the T-38. This
effect can be calculated in the same manner yawing moments were calculated
in the directional case.

Assuming.a positive sideslip angle,

'XF = (-Lp) (_zF) (5.64)
-2_L
Col = i (5.65)
F T w w
-2.C1,.49.S
Cp, = ——opt L (5.66) -
F W wlw i
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Define Vg as,

S.Z
_ FF
Vg =55 (5.67)
wow

Assume that for a jet aircraft,
Qp = 9, (5.68)

And equation 5.66 becomes,

CZF = - CLF VF = - a_FaFVF (5.69)
Knowing
ap = (8 = o) (5.14)
CQF = - aFVF (8 - 0) (5.70)
3Cy

P 3a
Cy . = = - a V|1 - — (5.71)

Pvertical 3B F'F 28

tail '

Equation 5.71 reveals that a vertical tail contributes a stable
increment to Cgy, Whereas a ventral fin [Vp = (+)] would contribute an
unstable increment to CQB. Also, if the lift curve slope of the vertical

tail is increased, by end plating for example, the stable dihedral effect
would be greatly increased. For example, the F-104 has a high horizontal
stabilizer that acts as an end plate on the vertical tail and this in-
creases the stable dihedral effect. 1In fact, the increase is so large
that it is necessary to add negative geometric dihedral to the wings and
a ventral fin to maintain a reasonable value of stable dihedral effect.

B5.13 Ciba - LATERAL CONTROL POWER

Lateral control is achieved by altering the 1lift distribution so
that the total lift on the two wings differ, thereby creating a rolling
moment. This may be done simply by destroying a certain amount of lift
on one wing by means of a spoiler, or by altering the lift on both wings
by means of ailerons. This discussion will be limited to the use of
ailerons as the means of lateral control.
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Since the purpose of the ailerons is to create a rolling moment,
a logical measure of aileron power would be the rolling moment created
by a given aileron deflection. Before progressing to the actual develop-
ment of this relationship, it is necessary to make several definitions.
A positive deflection of either aileron, +8,5, is defined as one which
produces a positive rolling moment, (right wing down). Thus, by definition,
Clda is positive. Also, in this discussion, total aileron deflection is

defined as the sum of the two individual aileron deflections. Thus,

Sarotal T fareft * farignt (5.72)

The assumption will be made that the wing c¢p shift due to aileron deflec-
tion will not alter the value of Cp,. The distance from the x-axis to the
cp of the wing will be labeled Y. When the ailerons are deflected, they
produce a change in lift on both wings. This total change in lift, AL,
produces a rolling moment, £ .

L=s1-7% (5.73)
aCy,

L= _"a . . .7
o da, +q, =S, - ¢ (5.74)

Where the "a" subscripts refer to "aileron" values.

L = a, 4 a_q.s, ¥ (5.75)
aa A aaSa?
Cz = ___S b (5.76)
W w

Where Aa_ = §

aTotal
a_65 s ¥
c, = -2-Tofal a (5.77)
W W
3C a s ¥ :
£ a a
— Cl = (5.78)
N §a bS,

Thus, from equation 5.78, it can be seen that lateral control power
is a function of the aileron airfoil section, the area of the aileron in
relation to the area of the wing, and the location of the wing cp.
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B 5.14 IRREVERSIBLE CONTROL SYSTEMS

Now that both Cyy and Cgg, have been discussed, it is possible to
develop a parameter which can ge measured in flight to determine the
static lateral stability of an aircraft. As in the directional case, the
maneuver that will be flown will be a steady straight sideslip. Consider-
ing this maneuver, equation 5.6 reduces to,

C, = Cgpb' + Cgsaéa + Cldrér =0 . (5.79)
- Ciér
Ga = = C—z_:— - E——a- Sp (5.80)
a
C .
3%a(pixed) _ L (Pixed)
—_—————— = ————— {>.81)
38 Cgéa

Thus, since Cyéa is known once the aircraft is built, 36&5/48., can

be taken as a direct measure of the static lateral stability of an air-
craft. Again, the subscript "Fixed" has been added as a reminder that
in this development the aileron has not been free to "float."”

Equation 5.81 reveals that for static lateral stability, a plot of
365/38 should have a positive slope. Refer to figure 5.34.

8a

STABLE

N
™ UNSTABLE

Figure 5.34 AILERON DEFLECTION VERSUS SIDESLIP ANGLE
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W5.15 REVERSIBLE CONTROL SYSTEMS

It is now necessary to consider an aircraft with a reversible con-
trol system. On this type aircraft, the ailerons are free to float in
response to their hinge moments. Using the same approach as in the direc-
tional case, it is possible to derive an expression that will relate the
"Aileron Free" static lateral stability to parameters that can be easily

measured in flight.

In a steady straight sideslip, t£= 0. Therefore, it follows that

£ = 0. Now if moments are summed about the aileron hinge pin,

Aileron
Hinge Pin .

the aileron force exerted by the pilot, F,, acts through a moment arm and
gearing mechanism, both accounted for by some constant, K, and must balance
the other aerodynamic rolling moments so that zxAileron = 0. Thus, in

steady straight flight, Hinge Pin

bd = = - "
'Xaileron 0 Fo " K+ Hy (5.82)
Hinge Pin

where G is merely 1/K.
Knowing.

H =C,_ gq_. S_ c_ - (5.84)

Ha =q, Sa c, (Chaa « oy + Chda * 8g) (5.85)

Thus, eguation 5.83 becomes,

F_=-~G q, Sa c

5 (Ch,_ * %a * Chg, - 8a) (5.86)

a ag

From equation 5.27,

Cha, * *a = 7 Chg,  %a(Float) (5.87)
Equation 5.86 becomes,
F,o=- G a, Sa C4 (—Chsa . Sa(Float) + Chéa * §3) (5.88)
F.=-Gg_ S_c_2C (6. - & ) (5.89)
a a a “a hda a a(Float)
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The difference between where the pilot pushes the aileron, 85, and
the amount it floats, da(Float)' is the free position of the aileron,

6a(Free)'

Therefore,

Fa = = G d, S5 S5 Chg, %a(pree)
3F 384

a _ _ (Free)
58 -~ ¢ 9 53 Ca Chsa 38

From equation 5.81, it can be shown that,

C
BCSa(Free) - - 18 (Free)
3B Cléa
Thus,
aFa Chaa
— =G g_ S Cc

C_. 7 Ly
a a a Czda B(Free)

(5.90)

(5.91)

(5.92)

(5.93)

This equation shows that the parameter aFa/BB, can be taken as an
indication of the aileron free static lateral stability of an aircraft.
This parameter can be readily measured in flight.

Aﬁ analysis of equation 5.93 reveals that for stable dihedral effect,

a plot of 3F;/23 would have a positive slope.

Fq

Refer to figure 5.35.

STABLE

N
N\ UNSTABLE

Figure 5.35 ADLERON FORCE VERSUS

SIDESLIP ANGLE

5.38




MWS5.16 ROLLING PERFORMANCE

It has been shown how aileron force and aileron deflection can be
used as a measure of the stable dihedral effect of an aircraft. However,
it is now necessary to consider how aileron force and aileron deflection
affect the rolling capability of the aircraft. For example, full aileron
deflection may produce excellent rolling characteristics on certain air-
craft, however, because of the large aileron forces required, the pilot
may not be able to fully deflect the ailerons, thus making the overall
rolling performance unsatisfactory. Thus, it is necessary to evaluate
the rolling performance of the aircraft,

The rolling qualities of an aircraft can be evaluated by examining
the parameters Fy, 65, p and (pb/2V). Although the importance of the
first three parameters is readily apparent, the parameter (pb/2V) needs
some additional explanation. Physically, (pb/2V) may be described as the
helix angle that the wing tip of a rolling aircraft describes. Refer to
figqure 5.36,

RESULTANT
PATH OF WING TIP

HELIX ANGLE

V=AIRCRAFT VELOCITY

Figure 5,36
"WING TIP HELIX ANGLE

It can be seen that,

tan (Helix Angle) = g% (5.94)
Assuming a small angle,
Helix Angle = BB (5.95)
2V )

Figure 5.36 is a vectorial presentation of the wind forces acting
on the downgoing wing during a roll. It shows that the angle of attack
of the downgoing wing is increased due to roll rate. Thus (pb/2V) repre-
sents a damping term.

With the foregoing background, it is possible to discuss the effect

of the parameters, Fa, 33, P, (pb/2V) throughout the flight envelope of
the aircraft.
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From equation 5.90, it can be seen that

= 2 :
F = (f) v 6a(Free) (5.96)

(£) F (5.97)

a

Y-

Ga(Free)

To derive a functional relationship for (pb/2V), it is necessary
to start with,

> A ~
Cg = CQBB + CgéB + Clp p + Czr r + CLsaGa + Czérér (5.6)

and examine the effects of roll terms only, i.e., assume that the roll
moment developed is due to the interaction of moments due to &, and roll
damping only. Therefore, equation 5.6 becomes,

Cy = Cy p+C16 §5 = Cyp ( ) ‘*C;z‘(s $4 (5.98)
a

P P

Below Mach or aerolastic effects, ClMax = constant, so if it is desired
to evaluate an aircraft's maximum rolling performance, equation 5.98
becomes,

pb =
Clp (ZV) + ngaéa constant (5.99)
Constant - ng S5
pby _ a
(ZV) C, (5.100)
P
( ) = (f) Sa (5.101)
From equation 5.97,
pby _ = 1_
(ZV) (£) Ga (£) Fa 2 (5.102)

A function relationship for roll rate, p, can be derived from equa-
tion 5.100,

Constant - Cgs §a
(5.103)

o
i
oUiN
<

C
‘p

o]
]

(£) V 6, (5.104)
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From equation 5.97,

(5.105)

<+

p=(£) Vo= (£) P,

To summarize, the rolling performance of an aircraft can be eval-
uated by examining the parameters, F, 83, p, and (pb/2V). Functional
relationships have been developed in order to look at the variance of
these parameters below Mach or aeroelastic effects. These functional
relationships are:

2

Fa = (f) v sa (5.96)
§ = (£) F. 1o (5.97)
a a V2 *
pb, _ _ 1
& = ¢, =0 5, 5 (5.102)
1
P o= () Vi, = (f) F & (5.105;

These relationships are expressed graphically in figure 5,37 for a
case in which the pilot desires the maximum roll rate at all airspeeds.

F=X
=
Faxf(¥Y2)
Fa
0 e
da=K
© T
Sazf(l)
8o 2 : VI
]
.09
Pbhay=x
py I !
v \\\\‘ v
03§ — ~d
0
180
a s 12
N - )
s P (V) \‘( =)
80 // Y
) 7
[]
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Figure 537 ROLLING PERFORMANCE
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As indicated in equation 5.96, the force required to hold a con-
stant aileron deflection will vary as the square of the airspeed. The
force required by the pilot to hold full aileron deflection will increase
in this manner until the aircraft reaches Vmax Or until the pilot is
unable to apply any more force. 1In figure 5.37, it is assumed that the
pilot can- supply a maximum of 25 pounds force and that this force is
reached at 300 knots. If the speed is incr€ased further, the aileron
force will remain at this 25 pound maximum value, The curve of aileron
deflection versus airspeed shows that the pilot is able to maintain full
aileron deflection out to 300 knots. Inspection of equation 5.97 shows
that if aileron force is constant_beyond 300 knots, then aileron deflec-
tion will be proportional to (1/V°). Equation 5.102 shows that (pb/2V)
will vary in the same manner as aileron deflection., Inspection of equa-
tion 5.105 shows that the maximum roll rate available will increase line-
arly as long as the pilot can maintain maximum aileron deflection; up to
300 knots in this case. Beyond this point, the maximum roll rate will
fall off hyperbolically. That is, above 300 knots, p is proportional to
1/v. It follows, then, that at high speeds the maximum roll rate may
become unacceptably low. One methcd of combating this problem is to in-
crease the pilot's mechanical advantage by adding boosted or fully powered
ailerons,

M6.17T ROLL DAMPING Cgp

Aircraft roll damping comes from the wing and the vertical tail.
The algebraic sign of Cg, is negative as long as the local angle of attack

remains below the local stall angle of attack.

The wing contribution to Cp, arises from the change in wing angle
of attack that results from the rolling velocity. It has already been
shown that the downgoing wing in a rolling maneuver experiences an in-
crease in angle of attack and that this increased o« tends to develop a
rolling moment that opposes the original rolling moment. However, when
the wing is near the aerodynamic stall, a rolling motion may cause the
downgoing wing to exceed the stall angle of attack. In this case, the
local 1ift curve slope may fall to zero or even reverse sign. The
algebraic sign of the wing contribution to CzP may then become positive.
This is what occurs when a wing "autorotates,™ as in spinning.

The vertical tail contribution to Cy, arises from the fact that when
the aircraft is rolled, the angle of attack on the vertical tail is
changed. This change in angle of attack develops a lift force. 1If the
vertical tail cg is above or below the aircraft cg, the rolling moment
developed will oppose the original rolling moment and Cep due to a con-

ventional vertical tail or a ventral fin will be negative.

W5.18 ROLLING MOMENT DUE TO YAW RATE — Cy

The contributions to this derivative come from two sources, the
wings and the vertical tail.

As the aircraft yaws, the velocity of the relative wind is increased
on the outboard wing and decreased on the inboard wing. This causes the

sl“




outboard wing to produce more lift and thus produces a rolling momen;.
A right yaw would produce more lift on the left wing and thus a ;oll;ng
moment to the right. fThus, the algebraic sign of the wing contribution
to Cip is positive.

The tail contribution to Cap arises from the fact that as the air-

craft is yawed, the angle of attack on the vertical tail is changed.
Refer to figure 5.38.

COMPONENT ORIGINAL
DUE TO YAY N7 :",'5‘ vive

AN
, Le

CHANGE INGy OUE TO YAW RATE

Figure 5.38

The lift force thus produced, Ly, will create a rolling moment if
the vertical tail cg is above or below the cg. For a conventional verti-
cal tail, the sign of Cyr wWill be positive while for a ventral fin the
sign will be negative,

5.1 ROLLING MOMENT DUE TO RUDDER DEFLECTION - Cose
When the rudder is deflected, it creates a lift force on the vertical

tail. If the cp of the vertical tail is above or below the aircraft cg
a rolling moment will result. Refer to figure 5.39.

5.44



L

+3,

Figwe 539 LIFT FORCE DEVELOPED AS A RESULT OF 3;

It can be seen that if the cp of the vertical tail is above the cg,
as with a conventional vertical tail, the sign of clﬁr will be negative.

However, with a ventral fin, the sign would be positive.

It is interesting to note that the effects of Cigyp and Cgs are oppo-
site in nature. When the rudder is deflected to the right, initially,
a rolling moment to the left is created due to Cgér. However, as side-
slip develops due to the rudder deflection, dihedral effect, CgB, comes

into play and causes a resulting rolling moment to the right. Therefore,
when a pilot applies right rudder to pick up a left wing, he initially
creates a rolling moment to the left and finally, to the right.
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@320 ROLLING MOMENT DUE TO LAG EFFECTS IN SIDENASH ~C.5

In the discussion of C,;, it was pointed out that during an increase
in 8, the angle of attack of the vertical tail will be less than it will
finally be in steady state conditions. If the cp of the vertical tail
is displaced from the aircraft cg, this change in ¢p due to lag effects
will alter the rolling moment created during the 8 build up period. Be-
cause of lag effects, Cip will be less during the 8 build up period than
at steady state. Thus, for a conventional vertical tail, the algebraic
sign of Czé is positive. :

Again, it should be pointed out that there is widespread disagree-
ment over the interpretation of data concerning lag effects in sidewash
and that the foregoing is only one basic approach toc a many faceted and
complex problem,

B 5.21 HIGH SPEED CONSIDERATIONS OF STATIC LATERAL STABILITY

Cyg = Generally, Ceg is not greatly affected by Mach number. How-
ever, in the transonic region the increase in the 1ift curve slope of
the vertical tail increases this contribution to Ceg and usually results
in an overall increase in Ceg in the transonic region.

Czd - Because of the decrease in the lift curve slope of all aero-

. da . . .
dynamic surfaces in supersonic flight, lateral control power decreases
as Mach number increases supersonically.

Aeroelasticity problems have been quite predominant in the lateral
control system, since in flight at very high dynamic pressures the wing
torsional deflections which occur with aileron usage are considerable and
cause noticeable changes in aileron effectiveness. At some high dynamic
pPressures, dependent upon the given wing structural integrity, the twist-
ing deformation might be great enough to nullify the effect of aileron
deflection and the aileron effectiveness will be reduced to zero., Since
at speeds above the point where this phenomenon occurs, rolling moments
are created which are opposite in direction to the control deflection,
this speed is termed "aileron reversal speed."” 1In order to alleviate
this characteristic the wing must have a high torsional stiffness which
presents a significant design problem in sweptwing aircraft. For an air-
craft design of the B-47 type, it is easy to visualize how aeroelastic
distortion might result in a considerable reduction in lateral control
capability at high speeds. 1In addition, lateral control effectiveness
at transonic Mach numbers may be reduced seriously by flow separation

effects as a result of shock formation. However, modern high speed fighter

designs have been so successful in introducing sufficient rigidity into
wing structures and employing such design modifications as split ailerons,
inboard ailerons, spoiler systems, etc., that the resulting high control
power, coupled with the low Cip of low aspect ratio planforms, has re-
sulted in the lateral control becoming an accelerating device rather than
a rate control. That is to say, a steady state rolling velocity is nor-

mally not reached prior to attaining the desired bank angle. Consequently,

many high speed aircraft have a type of differential aileron system to
provide the pilot with much more control surface during approach and
landings and to restrict his degree of control in other areas of flight.
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Spoiler controls are quite effective in reducing aeroelastic dis-
tortions since the pitching moment changes due to spoilers are generally
smaller than those for a flap type control surface. However, a problem
associated with spoilers is their tendency to reverse the roll direction
for small stick inputs during transonic flight. This occurs as a result
of re-energizing the boundary layer by a vortex generator effect for very
small deflections of the spoiler, which can reduce the magnitude of the
shock induced separation and actually increase the lift on the wing. This
difficulty can be eliminated by proper design techniques.

Cyn = Since the development of "damping" requires the development
of 1ift on either the wing or the tail, it is dependent on the value of
the 1lift curve slope. Thus, as the lift curve slope of both the wing
and tail decrease supersonically, Cgp will decrease. Also, since most
supersonic designs make use of low aspect ratio surfaces, Clp will tend
to be less for these designs.

Cay and ngr - Both of these derivatives depend on the development
of 1ift and will decrease as the 1ift curve slope decreases supersonically.

Cy: — Data on the supersonic variation of this derivative is sketchy,
but it probably will not change significantly with Mach number.

S U A e
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The study of dynamics is concerned with the time history of the
motion of some physical system. An aircraft is such a system, and its
equations of motion can be derived from theory. In their basic form
these equations comprise a set of six simultaneous, nonlinear differential
equations with ill-defined forcing functions such as Fx = f (Aero, Gravity,
Thrust). Recall from Chapter 1 that two methods were used to get these

equations into a set of workable simultaneous linear differential equa-
tions:

l. Small perturbations were assumed such that products of perturbations
were negligible.

2. Forcing functions were approximated by the linear part of a Taylor
Series expansion for the forcing function.

This set of linear differential equations can then be operated on by
Laplace transforms so that simple algebraic solutions followed by inverse
transformations back to the time domain result in equations which describe
the aircraft's motion as a function of time.

In the good old days when aircraft were simple, all aircraft exhibited
the five characteristic dynamic modes of motion, two longitudinal and
three lateral-directional modes. The two longitudinal modes are the short
period and the phugoid; the three lateral-directional modes are the Dutch
roll, the spiral, and the roll mode. Theoretical solutions for these
modes of motion can be obtained by the methods listed above.
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As aircraft control systems have increased in complexity, it is con-
ceivable that one or more of these modes may not exist as a dominant longi-
tudinal or lateral-directional mode. It can be expected, however, that
frequently the higher order effects of complex control systems will be quick
to die out and will leave the basic five dynamic modes of motion. When
this is not the case, the development of special pProcedures may be required
to meaningfully describe an aircraft's dynamic motion. For the purposes
of this chapter, aircraft will be assumed to possess these five basic modes
of motion.

During this study of aircraft dynamics, the solutions to both first
order and second order systems will be of interest, and several important
descriptive parameters will be used to define either a first order system
or a second or@er system,

The quantification of handling qualities, that is, specify how the
magnitude of some of these descriptive parameters can be used to indicate
how well an aircraft can be flown, has been an extensive -investigation
which is by no means complete. Flight test, simulators, variable stability
aircraft, engineering know-how, and pilot opinion surveys have all played
major roles in this investigation. The military specification on aircraft
handling qualities, MIL-F-8785B, is the culmination of this effort and has
the intent of insuring that an aircraft will handle well if compliance
has been achieved., This chapter will not attempt to evaluate how satis-
factory MIL-F-8785B is for this purpose, but suffice it to say that even
this comprehensive document has some room for improvement.

W6.2 DYNAMIC STABILITY

When it is necessary to investigate the dynamic stability character-
istics of a puysical System, the time history of its motion must be known.

6.2



As indicated earlier, this time history can be obtained theoretically
and with good accuracy in many cases, depending on the depth of the
theoretical analysis.

A particular mode of an aircraft's motion is defined to be "dynami-
cally stable" if the parameters of interest tend toward finite values
as time Increases without limit. Some examples of dynamically stable

time histories and some terms used to describe them are shown in figures
6.1 and 6.2
4

a

Figure 6.1 Exponentially Decreasing

mv%_

Figure 6.2 Damped Sinusoidal Oscillation

A mode of motion is defined to be "dynamically unstable" if the
parameters of interest increase without Iimit as time increases without

limit, Some examples of dynamic instability are shown in fiqures 6.3
and 6.4.
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Figure 6.3 Expenentiaily Increasing

Figure 6.4 Divergent Sinusoidal Oscillation

A mode of motion is said to have "neutral dynamic stability" if the
parameters of interest exhibit an undamped sinusoidal oscillation as time
increases without limit. A sketch of such motion is shown in figure 6.5.

A

[\

Figure 6.5 Undamped Oscillation
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@®6.2.1 EXAMPLE PROBLEM

To emphasize the difference between static stability and dynamic
stability the simple physical system shown in figure 6.6 consisting of

a mass and a spring will be examined for both static stability and dy-
namic stability.

Vs

N
K
ATTORTRR
L
M
e e,
Equilibrium Point v Zero Friction

Figure 6.6

@ 6.2.1.1 STATIC STABILITY ANALYSIS

If the mass were displaced from its equilibrium position, then a
spring force would exist to return M toward its initial position. Thus,
this physical system has positive static stability.

® 6.2.1.2 DYNAMIC STABILITY ANALYSIS

The motion of the system as a function of time must be known to
describe its dynamic stability. Two methods could be used to find the
time history of the motion of the block:

1. A test could be devised to perturb the block from its equilibrium
position and the resulting motion would be observed for analysis,

2. If a good enough mathematical model of the system could be obtained,
the equation of motion could be analyzed to describe its dynamic
stability.

Using the theoretical approach, the equation of motion for this
physical system is

x(t) = Cl cos (\/gt + %)

where C] and ¢ are constants dependent on the initial velocity and
displacement of the mass from its equilibrium condition. Examination of

its equation of motion shows that this system has "neutral dynamic sta-
bility."
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@®6.2.2 EXAMPLE PROBLEM
A similar analysis must be accomplished to analyze the aircraft

shown in figure 6.7 for longxtudlnal static stability and dynamic sta-
pility. This aircraft is operating at a constant oo in 1-g flight.

Reference Line

(Specified That CM‘;O)

Figure 6.7

©6.2.2.1 STATIC STABILITY ANALYSIS

If the aircraft were displaced from its equilibrium flight condi-
tions by increasing the angle of attack to & = ag + Acx, then the change
in pitching moment due to the increase in angle of attack would be nose

down because CM_ < 0. Thus the aircraft has positive static longitudinal
stability. *

96.2.2.2 DYNAMIC STABILITY ANALYSIS

The motion of the aircraft as a function of time must be known to
describe its dynamic stability. Two methods could be used to find the
time history of the motion of the aircraft:

1. A flight test could be flown in which the aircraft is perturbed

from its equilibrium condition and the resulting motion is recorded
and observed.

2. Solutions to the aircraft equations of motion could be obtained and
analyzed.

A sophisticated solution to the aircraft equations of motion with
valid aerodynamic inputs can result in good theoretically obtained time
histories., However, the fact remains that the only way to discover the

aircraft's actual dynamic motion is to flight test and record its motion
for analysis.

B 6.3 EXAMPLES OF FIRST AND SECOND ORDER DYNAMIC SYSTEMS

@6.3.1 SECOND ORDER SYSTEM WITH POSITIVE DAMPING
Tne problem of finding the motion of the block shown in figure 6.8

encompasses many of the meth.ds and ideas that will be used in finding
the time history of an aircraft's motion from its equations of motion,
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Figure 6.8 Second Order System

The differential equation of motion for this physical system is
0=Mx+Dx +Kx (6.1)

After Laplace transforming equation 6.1 and solving for X(S), the dis-
placement of the block in the Laplace domain, the result is

6.2
s + 25+ 6.2)

M

[\S
2R 2O

The denominator of the S domain equation which gives the response of a
system will be referred to as its "characteristic equation,"” and the
symbol ) (S) will be used to indicate the characteristic equation.

The 4(S) of a second order system will frequently be written in a
standard notation

0=5®+2cu S+ 2 (6.3)

where

]

W

n natural frequency

4 damping ratio
The two terms natural frequency and damping ratio are frequently used to
characterize the motion of second order systems,

Also, knowing the location of the roots of A(S) on the complex plane
makes it possible to immediately specify and sketch the dynamic motion
associated with a system, Continuing to discuss the problem shown in
figure 6.8 and making an identity between equations 6.2 and 6.3 results
in

— K
wn = Jﬁ ‘ (6.4)
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D

K (6.5)
2M "
The roots of 4(S) can be found from equation 6.3 to be
S1,2 T Thep Eolug (6.6
Where

__2.1
w3 = wnﬂl - g

Note that if (-1 < ¢ < 1), then the roots of 4(S) comprise a complex
conjugate pair, and for positive ¢ would result in root locations as
shcwn in figure 6.9,

? imaginary

X
Szj

> Readl

X
51’/r"

Figure 6.9 Complex Plane

The equation describing the time history of the block's motion can
be written by knowing the roots of 4(S) given in equation 6.6,

x(t) =C, e “tunt sin (ugt + ¢) (6.7)

Where

Cl and ¢ are constants determined by boundary conditions,
Knowing either the 4(S) root location shown in figure 6.9 or equation
6.7 makes it possible to sketch or describe the time history of the motion
of the block. The motion of the block shown in figqure 6.8 as a function

of time is a sinusoidal oscillation within an exponentially decaying enve-
lope and is dynamically stable.

96.3.2 SECOND ORDER SYSTEM WITH NEGATIVE DAMPING

A similar procedure to that used in Section 6.3.1 can be used to
find the motion of the block shown in figure 6.10.
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Figure 6.10

N

The differential equation of motion for this block is
0 =M% -DXx+Kx (6.8)

and the equation for X(S) 1is

X(8) = . Q (6.9)
S - " S + = .

By inspection, for this system

_[X
“n T VH (6.10)
T (6.11)

,K
2M i

From equation 6.11 note that the damping ratio has a negative value. The
equation giving the time response of this system is

e(pos. value) t

x(t) = Cl

sin(ud t + 4) (6.12)

where

-Lw pos. value

n
For the range (-1 < g < Q), the roots of A(S) for this system'

could again be plotted on the complex plane from equation 6.6 as shown
in figure 6.11.




A Imoginary

x/l/s]

> Real

x“2_.%

Figure §.11 Complax Plane

The motion of this system can now be sketched or described. The
motion of this system is a sinusoidal oscillation within an exponentially
diverging envelope and is dynamically unstable.

@6.3.3 UNSTABLE FIRST ORDER SYSTEM

Assume that some physical system has been mathematically modeled
and its equation of motion in the 8 domain is

¢ (8) = 6.4(5)—--3ﬁ77- (6.13)

For this system the characteristic equation is
a(s) = 8 -1.,75

And its root is shown plotted on the complex plane in figure 6.12,

b inaginary

/{/ $=1.75

X —®» Real

Figure 6.12 Complex Plane

The equation of motion in the time domain becomes

s(t) = 1.25 et:73 ¢t (6.14)

Note that it is possible to sketch or describe the motion for this

system by knowing the location of the root of A(S) or its equation of
motion,
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For an unstable first order system such as this, one parameter that
can be used to characterize its motion is T3, defined as the time to
double amplitude. Without proof,

T, = = (6.13)

For a first order system described by

z=c) edt (6.16)

Note that for a stable first order system a similar parameter has
been defined: Tl/2 is the time to half amplitude.

, _ =0.693
112 = —=a— (6.17)

Where the term a must have a negative value for a stable system.

@6.3.4 ADDITIONAL TERMS USED IN DYNAMLICS

The time constant, 1, is defined for a stable first order system
as the time when the exponent of e 1in the system equation is -=1.
From eguation 6.16,

_ =1
T = = (6.18)
The time constant can be thought of as the time required for the parameter

of interest to accomplish (1 - é)th of its total value change. UNote that

1_ 1 1

e 2.718 ~ 3
so that

(L - £):; §

With this in mind, it is easy to visualize an approximate value for a
system time constant from a time history. Thus, the magnitude of the

time constant gives a measure of how quickly the dynamic motion of a first
order system occurs.

The following list contains some terms commonly used to describe
second order systems based on damping ratio values:

Term Damping Ratio Value
Overdamped 1l <yt
Critically damped 1 =7¢
Underdamped 0 <z <1
Undamped 0 =¢

4 0

Negatively damped
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Typical responses can be visualized after the value of ¢

established,

W64 THE COMPLEX PLANE

complex plane,

has been

It is possible to describe the type response a system will have by
knowing the location of the roots of its characteristic equation on the

A first order response will be associated with each real

recot, and a complex conjugate pair will have a second order response that

is either stable, neutrally stable, or unstable.

A complicated system

such as an aircraft might have a characteristic equation with several
roots, and the total response of such a system will be the sum of the

responses associated with each root,

A summary of root location and

associated response is presented in the following list and sketch below.

Case

Case

Case

Case

Case

(Case I)i

6.12

II

III

v

Root Location

On the negative Real axis
(1st Order Response)

In the left half plane off

the negative Real axis
(2nd Order Response)

On the Imaginary axis
(2nd Order Response)

In the right half plane
off the positive Real axis
(2nd Order Response)

On the positive Real axis
(lst Order Response)

(Case III)
/\A

(Case II) l

Imaginary

N

AN
(Case 1V)

Associated Response

Dynamically stable with
exponential decay

Dynamically stable with
sinusocidal oscillation in
exponentially decaying
envelope

Neutral dynamic stability
Dynamically unstable with
sinusoidal oscillaticn in
exponentially increasing

envelope

Dynamically unstable with
exponential increase

Real

>

I\

\

(Case V)

Note that any roots appearing in the upper half plane
must have reflected roots in lower half plane.



W 6.5 HANDLING QUALITIES

Because the "goodness" with which an aircraft flies is often stated
as a general appraisal . . . "My F-69 is the best damn fighter ever built,
and it can outfly and outshoot any other airplane.," "It flies good."
"That was really hairy." . . . you probably can understand the difficulty
of measuring how well an aircraft handles. The basic question of what
parameters to measure and how those parameters relate to good handling
qualities has been a difficult one, and the total answer is not yet avail-
able. The current best answers for military aircraft are found in MIL-F-
8785B, the specification for the "Flying Qualities of Piloted Airplanes.”

When an aircraft is designed for performance, the design team has
definite goals to work toward . . . a particular takeoff distance, a
minimum time to climb, or a specified combat radius. If an aircraft is
also to be designed to handle well, it is necessary to have some definite
handling quality goals to work toward. Success in attaining these goals
can be measured by flight tests for handling qualities when some rather
firm standards are available against which to measure and from which to
recommend.

To make it possible to specify acceptable handling gualities it was
necessary to evolve some flight test measurable parameters. Flight testing
results in data which yield values for the various handling quality param-
eters, and the military specification gives a range of values that should
insure good handling qualities. Because MIL-F-8785 is not the ultimate
answer, the role of the test pilot in making accurate gualitative observa-
tions and reports in addition to generating the quantitative data is of
great importance in handling qualities testing.
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One method that has been extensively used in handling gualities
quantification is the use of pilot opinion surveys and variable stability
aircraft. For example, a best range of values for the short period
damping ratio and natural frequency could be identified by £flying a par-
ticular aircraft type to accomplish a specific task while allowing the
¢ and w, to vary. From the opinions of a large number of pilots, a
valid best range of values for ¢ and wpy could thus be obtained, as
shown in figure 6.13. .
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@6.5.1 FREE RESPONSE

The r and wp being discussed here are the aircraft free response
characteristics which describe aircraft motion without pilot inputs. With
the pilot in the loop, the free response of the aircraft is hidden as
pilot inputs are continually made. The closed loop block diagram shown
in figure 6.14 should be used to understand aircraft closed loop and open
loop response.

DESIRED CORRECTION

PILOT e CONTROL AIRCRAFT >
DESIRED U INPUT SYSTEM DYNAMICS

| SAS

OBSERVED 0-?

Figuwe 6.14

The free response of an aircraft does relate directly to how well the
aircraft can be flown with a pilot in the loop, and many of the pertinent
handling qualities parameters are for the open loop aircraft.

It must be kept in mind that the real test of an aircraft's handling
qualities is how well it can be flown closed loop to accomplish a par-
ticular mission., Closed loop handling quality evaluations such as air-to-
air tracking in a simulated air combat maneuvering mission play an impor-
tant part of determining how well an aircraft handles. .

@6.5.2 PILOT RATING SCALES!

The Calspan Corporation (formerly Cornell Aeronautical Laboratory)
has made notable contributions to the use and understanding of pilot
rating scales and pilot opinion surveys. Except for minor variations be-
tween pilots, which sometimes prevent a sharp delineation between accept-
able and unacceptable flight characteristics, there is very definite con-
sistency and reliability in pilot opinion. 1In addition, the opinions of
well qualified test pilots can be exploited because of their.engineering
knowledge and experience in many different aircraft types.

The stability and control characteristics of airplanes are generally
established by wind tunnel measurement and by technical analysis as part
of the airplane design process. The handling qualities of a particular
airplane are related to the stability and control characteristics. The
relationship is a complex one which involves the combination of the air-
plane and its human pilot in the accomplishment of the intended mission.
It is important that the effects of specific stability and control char-
acteristics be evaluated in terms of their ultimate effects on the suita-
bility of the pilot-vehicle combination for the mission. On the basis of

1A Revised Pilot Rating Scale for the Evaiuation of Hondling Qualities, CAL Report No. 153, Robert P. Harper
and George E. Cooper.
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this information, intelligent decisions can be made during the airplane
design phase which will lead to the desired handling qualities of the
final product,.

There are three general ways in which the relationship between sta-
bility and control parameters and the degree of suitability of the air-
plane for the mission may be examined:

1. Theoretical analysis
2. Experimental performance measurement
3. Pilot evaluation

Each of the three approaches has an important role in the complete
evaluation. One might ask, however, why is the pilot assessment necessary?
At present a mathematical representation of the human operator best lends
itself to analysis of specific simple tasks. Since the intended use is
made up of several tasks and several modes of pilot-vehicle behavior,
difficulty is experienced first in accurately describing all modes analvti-
cally, and second in integrating the quality of the subordinate parts into
a measure of overall quality for the intended use. In spite of these
difficulties, theoretical analysis is fundamental to understanding pilot-
vehicle difficulties, and pilot evaluation without it remains a purely
experimental process.

The attainment of satisfactory performance in fulfillment of a
designated mission is, of course, a fundamental reason for our concern
with handling qualities. Why cannot the experimental measurement of.per-
formance replace pilot evaluation? Why not measure pilot-vehicle per-
formance in the intended use - isn't good performance consonant with good
quality? A significant difficulty arises here in that the performance
measurement tasks may not demand of the pilot all that the real mission
demands. The pilot is an adaptive controller whose goal (when so in-
structed) is to achieve good performance. In a specific task, he is
capable of attaining essentially the same performance for a wide range
of vehicle characteristics, at the expense of significant reductions in
his capacity to assume other duties and planning operations. Significant
differences in task performance may not be measured where very real dif-
ferences in mission suitability do exist.

The questions which arise in using performance measurements may be
summarized as follows: (1) For what maneuvers and tasks should measure-
ments be made to define the mission suitability? (2) How do we integrate
and weigh the performance in several tasks to give an overall measure of
quality if measurable differences do exist? (3) Is it necessary to measure
or evaluate pilot workload and attention factors for performance to be
meaningful? If so, how are these factors weighed with those in (2)7?

(4) What disturbances and distractions are necessary to provide a realis-
tic workload for the pilot during the measurement of his performance in
the specified task?

Pilot evaluation still remains the only method of assessing the
interactions between pilot performance and workload in determining suit-
ability of the airplane for the mission. It is required in order to pro-
vide a basic measure of quality and to serve as a standard -against which
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pilot-airplane system theory may be developed, against which performance
measurements may be correlated and with which significant airplane design
parameters may be determined and correlated,

The technical content of the pilot evaluation generally falls into
two categories: one, the identification of characteristics which inter-
fere with the intended use, and two, the determination of the extent to
which these characteristics affect mission accomplishment. The latter
judgment may be formalized as a pilot rating.

In 1956, the newly formed Society of Experimental Test Pilots
accepted responsibility for one program session at the annual meeting of
the Institute of Aeronautical Sciences. For this purpose, a paper, en-
titled "Understanding and Interpretind Pilot Opinion" was prepared, which
represented an attempt to create better understanding and utilization of
pilot opinion and evaluation in the field of aeronautical research and
development. The widespread use of rating systems has indicated a general
need for some uniform method of assessing aircraft handling gualities
through pilot opinion.

Several rating scales were independently developed during the early
use of variable stability aircraft, These vehicles, as well as the use
of ground simulation, made possible systematic studies of aircraft handling
gqualities through pilot evaluation and rating of the effects of specific
stability and control parameters.

Figure 6.15 shows the l0-point Harper-Cooper Rating Scale that is
widely used today.
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Figure 6,15 Tem-Point Harper-Cooper Pilot Rating Scale
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A flow chart is shown in figure 6.16 which traces the series of
dichotomous decisions which the pilot makes in arriving at the final
rating. As a rule, the first decision may be fairly obvious. 1Is the
configuration controllable or uncontrollable? Subsequent decisions become
less obvious as the final rating is approached.

SERIES OF DECISIONS LEADING TO A RATING:

e

1. CONTROLLASLE oR UNCONTROLLABLE

[

[
2 ACCEPTABLE or URACCEPTABLE

l
[ 1

3. lsatisracrony QR UNSATISFACTORY

l |

f T 1 [ T 1 r T 1
Al A2 A3 A% AS A8 u7 us '} ] 0

Figure 6.16 Sequential Pilot Rating Decisions

If the airplane is uncontrollable in the mission, it is rated 10.
If it is contreollable, the second decision examines whether it is accept-
able or unacceptable., If unacceptable, the ratings U7, U8, and U9 are
to be considered (rating 10 has been excluded by the "controllable" answer
to the first decision). 1If it is acceptable, the third decision must
examine whether it is satisfactory or unsatisfactory. If unsatisfactory,
the ratings A4, A5 and A6 are to be considered; if satisfactory, the
ratings Al, A2, and A3 are to be considered.

The basic categories must be described in carefully selected terms
to clarify and standardize the boundaries desired. Following a careful
review of dictionary definitions and consideration of the pilot's require-
ment for clear, concise descriptions, the category definitions shown in
figure 6.17 were selected. When considered in conjunction with the struc-
tural outline presented in figure 6,16 a clearer picture of the series of
decisions which the pilot must make is cbtained,

CATEGORY DEFINITION

CONTRGLLASLE CAPABLE OF BEING CONTROLLED OR MANAGED 1N CONTEXT
OF MISSION, WITH AYAILABLE PILOT ATTERTION.

UNCONTROLLABLE CONTROL WiLL BE LOST DURING SOME PORTION OF MISSION.
p—— — —
ACCEPTABLE MAY HAVE DEFICIENCIES WHICN WARRANT IMPROVEMENT BUT
ADEQUATE FOR MISSION,  PILOT COMPENSATION, [F REQUIRED
TO ACHIEYE ACCEPTABLE PERFORMANCE, iS5 FEASIBLE.

UNACCEPTABLE DEFICIERCIES WHICH REQUIRE MAMDATORY |MPROVEMENT.
INADEQUATE PERFORMANCE FOR MISSION, EVEN WITH MAXIMUM
FEASIBLE PILOT COMPENSATION.

SATISFACTORY MEETS ALL REQUIREMENTS ANO EXPECTATIONS: GOOD EMOUGH
WiTHOUT (MPROYDMENT. CLEARLY ADEQUATE FOR MISSION.

UNSATISFACTORY RELUCTANTLY ACCEPTABLE. DEFICIENCIES WHICH WARRANT
IMPROVEMENT. PERFORMANCE ADEQUATE FOR MISSION wITH
FEASIBLE PILOT CONPEMSATION.

Figure 6.17 Major Category Definitions
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@6.5.2.1 MAJOR CATEGORY DEFINITIONS

lLet us examine what is meant by controcllable. To control is to
exercise direction of, or to command. Control also means to regulate.
The determination as to whether the airplane is controllable or not must
be made within the framework of the defined mission or intended use. An
example of the considerations of this decision would be the evaluation
of fighter handling qualities during which the evaluation pilot encounters
a configuration over which he can maintain control only with his complete
and undivided attention., The configuration is "controllable" in the sense
that the pilot can maintain control by restricting the tasks and maneuvers
which he is called upon to perform, and by giving the configuration his
undivided attention. However, for him to answer "Yes, it is controllable
in the mission," he must be able to retain control in the mission tasks
with whatever effort and attention are available from the totality of
his mission duties.

The dictionary shows acceptable to mean that a thing offered is
received with a consenting mind; unacceptable means that it is refused
or rejected. Acceptable means that the mission can be accomplished;
it means that the evaluation pilot would agree to buy it for the mission:
for him to fly, for his son to fly, or for either to ride in as a passen-
ger. "“Acceptable" in the rating scale doesn't say how good it is for the
mission, but it does say it is good enough. With these characteristics,
the mission can be accomplished. It may be accomplished with considerable
expenditure of effort and concentration on the part of the pilot, but the
levels of effort and concentration required in order to achieve this accept-
able performance are feasible in the intended use. By the same token, un-
acceptable does not necessarily mean that the mission cannot be accom-
plished; it does mean that the effort, concentration, and workload neces-
sary to accomplish the mission are of such a magnitude that the evaluation
pilot rejects that airplane for the mission.

Consider now a definition of satisfactory. The dictionary defines
this as adequate for the purpose. A pilot's definition of satisfactory
might be that it isn't necessarily perfect or even good, but it is good
enough that he wouldn't ask that it be fixed. It meets a standard, it
has sufficient goodness; it can meet all requirements of a mission.
Acceptable but unsatisfactory implies that it is reluctantly acceptable
even though objectionable characteristics should be improved, that it is
deficient in a limited sense, or that there is insufficient goodness.
Thus, the quality is either:

a. Completely acceptable (satisfactory) and therefore of the best
category, or

b. Reluctantly acceptable (unsatisfactory) and of the next best
category, or

c. Unacceptable. Not suitable for the mission, but still controllable,
or

d. Unacceptable for the mission and uncontrollable.
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®6.5.2.2 EXPERIMENTAL USE OF RATING OF HANDLING QUALITIES

The evaluation of handling qualities has a similarity to other
sctentific experiments in that the output data are only as good as the
care taken in the design and execution of the experiment itself and in
th¢ analysis and reporting of the results. There are two basic categories
of output data in a handling qualities evaluation: the pilot comment
data and the pilot ratings. Both items are important output data. An
experiment which ignores one of the two outputs is discarding a substan-
tial part of the output information.

As one might expect, the output data which are most often neglected
are the pilot comments, primarily because they are quite difficult to
deal with due to their qualitative form and, perhaps, their bulk. Ratings,
howo wer, without the attendant pilot objections, are only part of the
story. ©Only if the deficient areas can be identified, can one expect to
devis- improvements to eliminate or attenuate the shortcomings. The
ppilot comments are the means by which the identification can be made.

There are several factors which have a strong influence on the
jutlity of pilot evaluation data and a brief discussion of them follows.

®6.5.2.3 »ASS10t DEFINITION

txplicit definition of the mission is probably the most important
contrioutor to the objectivity of the pilot evaluation data. The mission
1s de-ined here as a use to which the pilot-airplane combination is to
ix: pnt, The mission must be very carefully examined, and a clear defini-
tror 2nd understanding must be reached between the engineer and the evalua-
Lion rrilot as to their interpretation of this mission., This definition

Laet includes
<. ~at the pilot is required to accomplish with the airplane, and
b. the conditions or circumstances under which he must perform the

mission,

iwr example, the conditions or circumstances might include instru-
ment oo visual flight or both, type of displays in the cockpit, input
tnforration to assist the pilot in the accomplishment of the mission,

«' . The environment in which the mission is to be accomplished must

4! 5 v cdefined and considered in the evaluation, and could include,

for enample, the presence or absence of turbulence, day versus night,
the 7 -equency with which the mission has to be repeated, the variability

in th: preparédness of the pilot for the mission, and his level of
proficiency.

®6.5 2.4 SIMULATION SITUATION

"he pilot evaluation is seldom conducted under the circumstances of
ther 10«1 mission. The evaluation almost inherently involves simulation
to soiv: degree because of the absence of the real situation. As an ex-

ampre, the evaluation of a day fighter is seldom carried out under the
c¢ircumstances of a combat mission in which the pilot is not only shooting
at recl targets, but also being shot back at by real guns. Therefore,
after the mission has been defined, the relationship of the simulation
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situation to the real mission must be explicitly stated for both the
engineer and the evaluation pilot so that’each may clearly understand
the limitations of the simulation situation,

The pilot and engineer must both know what is left ocut of the eval-
uation program, and also what is in that should not be in. The fact that
the anxiety and tension of the real situation are missing, and that the
airplane is flying in the clear blue of calm daylight air, instead of in
the icing, cloudy, turbulent, dark situation of the real mission, will
affect results. Regardless of the evaluation tasks selected, the pilot
must use his knowledge and experience to prov1de a rating whlch includes
all considerations which are pertinent to the mission, whether provided
in the tasks or not.

©6.5.2.5 PILOT COMMENT DATA

One of the fallacies resulting from the use of a rating scale which
is considered for universal handling gualities application is the assumption
that the numerical pilot rating can represent the entire qualitative assess-
ment. Extreme care must be taken against this oversimplification because
it does not constitute the full data gathering process.

The pilot objections to the handling qualities are important, par-
ticularly to the airplane designer who is responsible for the improvement
of the handling gualities. But, even more important, the pilot comment
data are essential to the engineer who is attempting to understand and
use the pilot rating data. 1If ratings are the only output data, one has
no real way of assessing whether the objectives of the experiment were
actually realized, Pilot comments supply a means of assessing whether
the pilot objections (which lead to his summary rating) were related to
the mission or resulted from some extraneous uncontrolled factor in the
execution of the experiment, or from individual pilots focusing on and
weighing differently various aspects of the mission. In order that the
pilot comments be most useful, several details are important.

The comments must be given by the pilot in the simplest language.
Engineering terms are generally to be avoided, unless they are carefully
defined. The pilot should report what he sees and feels, and describe
his difficulties in carrying out that which he is attempting. It is then
important for the pilot to relate the difficulties which he is having in
executing specific tasks to their effect on the accomplishment of the
mission,

The pilot should be required to make specific comments in evaluating
each configuration. These comments generally are in response to questions
which have been developed in the discussions of the mission and simulation
situation, The pilot must also be free to make comments regarding his
difficulties over and above the answers to the specific questions asked
of him, In this regard, the test pilot shculd strive for a balance between
a continuous running commentary and occasional comment in the form of an
explicit adjective. The former often requires so much editing to find
the substance that it is often ignored, while the latter may add nothing
to the numerical rating itself.

The pilot comments must be taken during or immediately after each
evaluation., For in-flight evaluations, this means that the comments
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should be recorded on a tape recorder, Experience has shown that the

best free comments are often given during the evaluation. If the comments
are left until the conclusion of the evaluation, they are often forgotten,
A useful procedure is to permit free comment during the evaluaticn itself
and to require answers to specific questions in the summary comments at the
end of the evaluation,

Questionnaires and supplementary pilot comments are most necessary
to ensure that: (a) all important or suspected aspects are considered
and not overlooked, (b) information is provided relative to why a given
rating has been given, (c) an understanding is provided of the tradeoffs
with which pilots must continually contend, and (d) supplementary comment
that might not be offered otherwise is stimulated, It is recommended
that the pilots participate in the preparation of the gquestionnaires. The
questionnaires should be modified if necessary as a result of the pilots'
initial evaluations.

©6.5.2.6 PILOT RATING DATA

The pilot rating is an overall summation of the net effect of all of
the objections which the pilot has observed during the evaluation as they
relate to the mission, It is emphasized that the basic question that is
asked of the pilot conditions the answer that he provides. For this rea-
son, 1t is most important to ensure that the objectives of the program
are clearly stated and understood by all concerned, and that all criteria,
whether established or assumed, be clearly defined. 1In other words, it
is extremely important that the basis upon which the evaluation is estab-
lished be firmly understood by pilots and engineers. Unless a common
basis is used, one cannot hope to achieve comparable pilot ratings, and
confusing disagreement will often result. Care must also be taken that
criteria established at the beginning of the program carry through to the
end. If the ‘pilot finds it necessary to modify his tasks, technique or
mission definition during the program, he must make it clear just when
this change occurred.

A discussion of the specific use of a rating scale tends to indicate
some disagreement among pilots as to how they actually arrive at a specific
numerical rating. There is general agreement that the numerical rating
is only a shorthand for the word definition. Some pilots, however, lean
heavily on the specific adjective description and look for that description
which best fits their overall assessment. Other pilots prefer to make the
dichotomous decisions sequentially, thereby arriving at a choice between
two or three ratings. The decision among the two or three ratings is then
based upon the adjective description. 1In concept, the latter technigue
is much to be preferred since it emphasizes the relationship of all de-
cisions to the mission.

It is suggested that the actual technique used is somewhere between
the two techniques above and not so different among pilots, 1In the past,
the pilot's choice has probably been strongly influenced by the relative
usefulness of the descriptions provided for the categories on one hand,
and the numerical ratings on the other. The evaluation pilot is more
or less continuously considering the rating decision process during his
evaluation. He proceeds through the dichotomous decisions to the adjective
descriptors enough times that his final decision is a blend of both tech-
niques. It is therefore obvious that descriptors should not be contra-
dictory to the mission-oriented framework.
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Half ratings are permitted (e.g., rating 4.5) and are generally
used by the evaluation pilot to indicate a reluctance to assign either
of the adjacent ratings to describe the configuration. Any finer break-
down than half ratings is prohibited since any number greater than or
less than the half rating implies that it belongs in the adjacent group.
Any distinction between configurations assigned the same rating must be
made in the pilot comments. Use of the 3.5, 6.5, and 9.5 ratings is dis-
couraged as they must be interpreted as evidence that the pilot is unable
to make the fundamental decision with respect to category.

As noted previously, the pilot rating and comments must be given
on the spot in order to be most meaningful. If the pilot should later
want to change his rating, the engineer should record the reasons and the
new rating for consideration in the analysis, and should attempt to repeat
the configuration later in the evaluation program. If the configuration
cannot be repeated, the larger weight (in most circumstances) should be
given to the on-the-spot rating since it was given when all the character-
istics were freshest in the pilot's mind,

@6.5.2.7 EXECUTION OF HANDLING QUALITIES EXPERIMENTS

Probably the most important item is the admonition to execute the
cxperiment as it was planned. This requires careful attention to the
conduct of the experiment so that the plans are actually executed in the
manner intended. It is valuable for the engineer to monitor the pilot
comment data as the experiment is conducted in order that he becomes aware
of evaluation difficulties as soon as they occur. These difficulties may
take a variety of forms. The pilot may use words which the engineer needs
to have defined. The pilot's word descriptions may not convey a clear,
understandable picture of the piloting difficulties. Direct communication
between pilot and engineer is most important in clarifying such uncer-
tainties. In fact, communication is probably the most important single
element in the evaluation of handling qualities. Pilot and engineer must
endeavor to understand one another, and cooperate to achieve and retain
this understanding. The very nature of the experiment itself makes this
somewhat difficult. The engineer is usually not present during the evalua-
tion and, hence, he has only the pilot's word description of any piloting
difficulty. Often, these described difficulties are contrary to the
intuitive judgments of the engineer based on the characteristics of the
airplane by itself. Mutual confidence is required. The engineer should
be confident that the pilot will give him accurate, meaningful data; the
pilot should be confident that the engineer is vitally interested in what
he has to say and trusts the accuracy of his comments.

It is important that the pilot have no foreknowledge of the specific

characteristics of the configuration being investigated. This does not
exclude information which can be provided to help shorten certain tests
(e.g., the parameter variations are lateral-directional, only). But it

does exclude foreknowledge of the specific parameters under evaluation.

The pilot must be free to examine the configuration without prejudice,
learn all he can about it from meeting it as an unknown for the first time,
look clearly and accurately at his difficulties in performing the evalua-
tion task, and freely associate these difficulties with their effects on
the ultimate success of the mission. A considerable aid to the pilot in
this assessment is to present the configuration in a random-appearing
fashion.
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The amount of time which the pilot should use for the evaluation is
difficult to specify a priori. He is normally asked toc examine each con-
figuration for as long as 1is necessary to feel confident that he can give
a reliable and repeatable assessment. Sometimes, however, it is necessary
to limit the evaluation time to a specific period of time because of cir-
cumstances beyond the control of the researcher. If the evaluation time
per pilot is limited, a larger sample of pilots or repeat evaluations
will be required for similar accuracy, and the pilot comment data will
be of poorer quality.

One final point is the state of mind of the evaluation pilot. He
must be confident of the importance of the simulation program and join
wholeheartedly into the production of data which will supply answers to
the questions. Pilcots as a group are strongly motivated toward the produc-
tion of data to improve the handling qualities of the airplanes they fly.
It isn't usually necessary to explicitly motivate the pilot, but it is
very important to inspire in him confidence in the structure of the experi-
ment and the usefulness of his rating and comment data. Pilot evaluations
are probably one of the most difficuit tasks that a pilot undertakes.
To produce useful data involves a lot of hard work, tenacity, and careful
thought. There is a strong tendency for the pilot to becdme discouraged
in the course of his evaluations about their ultimate usefulness. He
worries constantly about his assessments: their accuracy and repeatability.
The pilot may feel that the engineer has the answers on a sheet of paper
and he 1s merely testing the pilot as to his ability to search out the
correct answers. Such feelings are added to by a lack of communication
between the piloting and engineering organizations and are to be avoided.
Probably the best approach is to explicitly state to the pilot that only
he knows the answers to the questions which are being asked, and he can
arrive at these correct answers by carrying out the evaluation program.,
He must be reassured in the course of the program that his assessments
are good, so that he gains confidence in the manner in which he is carry-
ing out the program.

@65 CONTROL INPUTS

There are several different control inputs that could be used to
excite the dynamic modes of motion of an aircraft. To accomplish the task
of obtaining the free response of an aircraft, the pilot makes an appro-
priate control input, removes himself from the loop, and observes the
resulting aircraft motion. Three inputs that are frequently used in sta-
bility and control investigations will be discussed in this section:
the step input, the pulse, and the doublet.

®6.6.1 STEP INPUT

When a step input is made, the app.:cable control is rapidly moved
to a desired new position and steadily held there. The aircraft motion
resulting from this suddenly applied new control position can then be
recorded for analysis. A mathematical representation of a step input
assumes the deflection occurs in zero time and is contrasted to a typical
actual control position time history in figure 6.18. The "unit step"”
input is frequently used in theoretical analysis and has the magnitude
of one radian, which is equivalent to 57.3 degrees. Specifying control
inputs in dimensionless radians instead of degrees is convenient for use
in the non-dimensional equations of motion.
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IDEAL INPUT

Sa — — — — ACTUAL INPUT

Figure 6.18 Step Input

@6.6.2 PULSE

When a pulse, or singlet, input is applied, the control is moved
rapidly to a desired position, held momentarily, and then rapidly returned
to its original position., The pilot can then remove himself from the
loop and observe the free aircraft response. Again, deflections are theo-
retically assumed to occur instantaneously, and an example of a pulse,
or singlet is shown in figure 6.19.

IDEAL INPUT
== — == = ACTUAL INPUT

TRIM === T o= === =

Figure 6.19 Pulse input

The "unit impulse" input is frequently used in theoretical analysis
and is related to the pulse input., The unit impulse is the mathematical
result of a limiting process which begins with a pulse having an area
of unity under the rectangle formed by the input and ends with an in-
finitely large magnitude input applied in zero time.
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@®6.6.3 DOUBLET

A doublet input is a double pulse which is skew symmetric with time.
After exciting a dynamic mode of motion with this input and removing him-
self from the control loop, the pilot can record the aircraft open loop
motion. Figure 6.20 depicts a theoretical doublet input,

Is

Figure 6.20 Doublet Input
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®6.] EQUATIONS OF MOTION

Six equations of motion (three translational and three rotational)
for a rigid bedy flight vehicle are required to solve its motion problem,
A rigid pbody aircraft and constant mass were assumed, and the equations
of motion were derived and expressed in terms of a coordinate system fixed
in the body. Solving for the motion of a rigid body in terms of a body
fixed coordinate system is particularly convenient in the case of an air-
craft when the applied forces are most easily specified in the body axis
system,

"Stability axes" were used to specify the body fixed coordinate sys-
tem. With the vehicle at reference flight conditions the x axis is
aligned into the relative wind; the =z axis is 90 degrees from the X
axis in the aircraft plane of symmetry, with positive direction down rela-
tive to the vehicle; the y axis completes the orthogonal triad, This
xy2z coordinate system is then fixed in the vehicle and rotates with it
when perturbed from the reference equilibrium conditions. The solid
lines in figure 6.21 depict initial alignment of the stability axes, and
the dashed lines show the perturbed coordinate system,

/Chord . /i
o)

] i

INITIAL ORIENTATION

PERTURBED AXIS

Figure 6,21 Stahility Axis System
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Chapter 1 contains the derivation of the complete equations of
motion, and the results are listed here for your convenience,

Fx =m (U + qw - rv) )
F_=m (V + ru - pw)
y ( P
F,=m (w + pv - qu) > (6.19)
L =pI, +gr (I, - I)) = (r+pq) I,
. _ _ 2 _ 2
M o=qI, -pr (I, )+ (p r’) I,

N =rI, + pq (Iy - Ix) + (gr - p) Ix J

z
where Fx' Fy’ and Fz are forces in the x, y, and z direction, and L, M,

and N are moments about the x, y, and z axes taken at the vehicle center
of mass.

@6.7.1 SEPARATION OF THE EQUATIONS OF MOTION

When all lateral-directional forces, moments, and accelerations are
constrained to be zero, the eguations which govern pure longitudinal mo-
tion result from the six general equations of motion. That is, substitut-

ing -~
p = 0 =«
E.) = 0 = . 1.‘
L =0 =N >> (6.20)
F = 0
Y
v = 0
v = 0 J

into the equations labeled 6.19 results in the longitudinal equations
of motion:

Fx = m (0 + gw)
F, = m (w = qu) (6.21)
M = q I

4ty

Linearization of the equations labeled 6.21 by Taylor series first order
approximations of the forcing functions and small perturbation assumptions
for the variables u, q, and w result in a set of workable equations for
longitudinal motion. Note that the resulting equations are the longitu-
dinal perturbation equations, and that the unknowns are the perturbed
values of a, u, and 6 from the eguilibrium condition. These equations

in coefficient form are2

2Automatic Control of Aircraft and Missiles, Blaokelock, Wylie, 1965.
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o - -C . -C : mg -
= u - ¢C ul +{=—-C_ a -C_ a| +|5=—C B+ = 9] = C Se
Sq Xu ZUO x& xu ZJO xq Sqg x(‘;e
mUo c . —mUO c .
-C_uj + — - ==~ C a = C_ ol + C 8 = C Se (6.22)
( zZ, } Sq ZUO z; z, Sq ZUO zq 250 F
- I, - . )
~Cy U "(TU—CM.“‘CM“ Yl &@e T % | T Cu, S
u o Y ™ o q de J

In the equations labeled 6.22,

1 2
1= 320
g = AU

U
(o]
t, 1
CX ’ Cz ’
u t

etc.,

(except when gq 1is a subscript denoting a partial deriva-
tive with respect to pitch rate.)

(A dimensionless velocity parameter has been defined for
convenience.)

are perturbations about their equilibrium values.
are partial derivatives evaluated at the reference

conditions with respect to force coefficients. Dperivations
for these terms may be found in Blakelock.

Note that the equations labeled 6.22 are for pure longitudinal motion
and that the unknowns are perturbation values about the reference condi-

tions.

Laplace transforms can be used to facilitate solutions tc the longi-

tudinal perturbation equations.
force equation and stating that initial perturbation values

of the x

For example, taking Laplace transforms

are zero results in

nmo
5q S - Cx
= (..x se (S)

The other two

a set of longitudinal perturbation eguations in the

@68 LONGITUDINAL

mg

5q 8(s)

-C -C
u(s) + 55~ 4. S - C, a(S) + 55 Cx S *
o ) o o g

(6.23)

equations could similarly be Laplace transformed to obtain
S domain.

MOTION

The equations labeled 6.22 describe the perturbed longitudinal motion

of an aircraft about some equilibrium conditions.

The theoretical solu-

tions for aircraft motion can be quite good, depending on the accuracy of

the various aerodynamic parameters.
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is one parameter appearing in the x force equation, and the goodness
of the solution will certainly depend on” how accurately the values of
Cy and Cp are known. Before an aircraft flies, such values result from

theoretical predictions and wind tunnel data. After appropriate flight
tests have been flown, values for the various stability derivatives can
be extracted from flight test data.

@6.8.1 EXAMPLE PROBLEM

Blakelock presents an example problem for a four-engine jet transport
using the longitudinal equations to solve for the perturbed aircraft mo-
tion. The reference flight conditions are straight and level at 40,000
feet with a velocity of 600 feet per second. Values for the various aero-
dynamic parameters are specified, and the set of longitudinal equations
in the Laplace domain become

{13.78s + .088]u(S) -~ .392a(S) + .743(S) = Cx se (S)

Se
1.48u(S) + [13.78S + 4.46]a(S) - 13.,78S86(8) = Cz se (S) (6.24)
de
0 + [.05528 + .619]a(S) + [.514S2 + .192s8)68(8S) = CM Se
. Se
These equations are of the form

au + ba + c8 = d

eu + £ a + g6 = h (6.25)
iu 4+ jJa + ke = 2

and the set of eguations can be readily solved for any of the variables,
For example, from equation 6.25,

d
e h g
(S) = . k Numerator (S)
2 b Denominator (3)
£ g
3 k

Recall that the denominator of tie above eguation in the S domain is
the system characteristic equation and that the location of the roots of
4(S) will immediately indicate the type of dynamic response. From egua-
tion 6.24

a(s) = 97.58% + 798 + 128.95% + .9985 + .677 (6.26)

Factoring higher order equations such as 6.26 is not a simple thing, but
some systematic approaches do exist. Blakelock refers to Lin's method
and accomplishes the factoring of 6.26 into two gquadratics,

A(S) = (S2 + .004665 + .0053) (s® + .806S + 1.211) (6.27)
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Each of the quadratics listed in equation 6.27 will have a natural
frequency and damping ratio associated with it, and the values can be
rapidly computed by comparing the particular quadratic to the standard
notation second order characteristic equation:

¢y = 0.352

(6.28)
w = 1,145 radians/sec
n
Cl = (0.032

(6.29)
w = 0.073 radians/sec
n, :

@46.8.2 LONGITUDINAL MOTION MODES

Experience has shown that aircraft exhibit two different types of
longitudinal oscillations:

1. One of short period with relatively heavy damping that is called
the "short period" mode.

2. Another of long period with very light damping that is called the
"phugoid” mode,

The periods and damping of these oscillations vary from aircraft to air-
craft and with flight conditions.

The short period mode is characterized primarily by variations in
angle of attack and pitch angle with very little change in forward speed.
Relative to the phugoid, the short period has a high frequency and heavy
damping.

Typical values for its damped period are in the range of 2 to 5
seconds. Generally, the short period motion is the more important longi-
tudinal mode for handling qualities since it is contributing to the motion
being observed and corrected by the pilot when the pilot is in the lcop.

The phugoid mode is characterized mainly by variations in u and
v with o nearly constant. This long period oscillation can be thought
of as a constant total energy problem with exchanges between potential
and kinetic energy. The aircraft nose drops and airspeed increases as
the aircraft descends below its initial altitude. Then the nose rotates
up, causing the aircraft to climb above its initial altitude with air-
speed decreasing until the nose lazily drops below the horizon at the top
of the maneuver,

Because of light damping, many cycles are required for this motion
to damp ocut. However, its long period combined with low damping results
in an oscillation that is easily controlled by the pilot, even for a
slightly divergent motion. When the pilot is in the loop, he is freguently
not aware that the phugoid mode exists as he makes control inputs and ob-
tains aircraft response before the phugoid can be seen. Typical values
for its damped period range in the order of 45 to 90 seconds.
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From the example problem in section 6.8.1 and from the descriptions
of the longitudinal mode, it is possible to immediately specify which
parameters are associated with the short period and which must be that
aircraft's phugoid parameters.

@6.8.3 SHORT PERIOD APPROXIMATION EQUATIONS

A logical approach to use when trying to get a simplified set of
equations to describe the short period mode is to recall that the short
period occurs at nearly constant airspeed and set u = 0 in the equations
labeled 6.22. The result of this substitution is two unknowns appearing
in three independent equations, and it is certainly desirable to select
the correct set of two equations for solution. Note that the x force
equation could be expected to contribute primarily to a change of velocity
in the x direction; however the specification that u = 0 has_been made
for this approximation. Choosing to discard the x force egquation and
making the above substitutions results in a set of two egquations with the
unknowns o and 8, In the § domain these equations are

TEE s -C_ la(s) + % Sl6(s) =C_ sel(s) )
Sq zd Sq zae
(6.29)
- S c s -c, lags) + Iy 2.5 ¢ s|les) =c, se(s)
2Uo M& MJ _ Sgc ZUO Mq Mée

where C_ and C, have been assumed to be negligible.
4 q

As for previous examples, recall that the characteristic equation
can be found by expanding the determinant of the coefficients from the
left side of the equations labeled 6.29. From these equations, the
characteristic equation is

2

A{(S) = S (AS® + BS + C) (6.30)
where
I mU
8qc /| Sq
—c mUo Iv c mUO
B = |55~ % |lag | " |fac €z | T |20 .|\ 59—
o q a o o
my
= [ S - 2
c= (20 M_ Cz ) 8q M
o q a a

To find expressions for the short period damping ratio and natural fre-
quency from the second order part of eguation 6.30, it can be rewritten
as

_ 2 . B C
a(s)y =s (8° + g5+ 3

and compared to the standard notation second order characteristic equation.
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Some rather involved expressions result for ¢ and w

n
1/2
21 2
1 mc
t = -7 (% *Cy. *t—%C, T T TR C
q mc af Iy Mq a Ma\
¥y ) T %3c ﬂ
c. <, '11/2 (6.31)
q a _ 2m
o UopSc y) 5T qgﬁ
“n 2 Im

If the aircraft parameter values that were used in the example problem
from section 6.8.1 are substituted in the equations labeled 6,31, the
following values result for ¢ and w

¢ = .35 w, = 1.15 (6.32)

Comparison of the above to the values shown in the equations labeled 6.28
show good agreement for this problem.

The complicated expressions listed in the equations labeled 6.31
can be further simplified by discarding the terms that are usually the
smallest contributors to ‘the expressions. Stating that the CM& and Cza

terms in the numerator of the ¢ expression are negligible when compared
to CMq and that the CMq Cz, term in the denominator is small compared

to the Cpm term results in a more simplified expression for . This
functional relationship can be used to predict trends in the short period
damping ratio as flight conditions are changed.

-c )
M
(——9 (6.33)

T (ﬁf)ﬁj

Stating that the CMa term is the significant one in the numerator

of the w, expression listed in 6.31 results in

[of ,SC
mnk u)n UO fy— 2—— -CMa (6.34)

Equation 6.34 can be used to predict the trends expected in the short
period natural frequency as flight conditions change. Both equations 6,33
and 6.34 show the predominant stability derivatives which affect the

short period damping ratio and natural fregquency.

@6.8.4 PHUGOID APPROXIMATION EQUATIONS

An approach similar to that used when obtaining the short period
approximation will be used to obtain a set of equations to approximate
the phugoid oscillation. Recalling that the phugoid motion occurs at
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nearly constant angle of attack, it is logical to substitute o = 0 into
the longitudinal motion equations. This results in a set of three equa-
tions with only two unknowns. Further reasoning that the phugoid motion
is characterized primarily by altitude excursions and changes in aircraft
speed implies that the 2z force and x force equations are the two equa-
tions which should be used., The resulting set of two equaticns for the
phugoid approximation in the Laplace domain is

mJ ng
= S = C u(s) + {=1]196(8) = C je (S
53 x |30 * sg | 008 = Cy (s)
--mUO
-C u(s) + S8 (s) =C se (S)
zu Sq zée

where Cxq and Czq have been assumed to be negligibly small.

The characteristic equation for the phugoid approximation can now
be found using the above equations.

2
mU mU '
- - o 2 e} mg
A(S)— -—S_Ci—- S + S—q—— cxu S + S—q— czu (6.35)

Note that 1lift and weight are not equal during phugoid motion, but also
realize that-the net difference between lift and weight is quite small.
If the approximation is made that

L = W
and then the substitution that

W = mg
it can be written that

mg  _
Sq CL
The phugoid characteristic equation can thus be rewritten as

Cc

_ a2 Xy Cr
A(S) = 8§ - T S - Cz
o mUo u
Sg ga—

The phugoid natural frequency is then found to be
~ DSUo

wn - ——z—rn—- —CZu CL (6.36)
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In an effort to further simplify equation 6.36, the Czu terms should be
examined. Examining figure 6.22

L

o Ada v
% HORIZON
° {/(
An
z
Figure 6,22
leads to
Fz = - L cos a - D sin «a
then, .
;;E = - %% coé a + L sin « %% - %% sin a = D cos a %% -

which must be evaluated at the equilibrium conditions for use in the first
order Taylor Series that was used in obtaining the linearized equations
of motion

z - . 3L
3u au
o
And,
\F
z _ 3 2
wa 7w CL S 7Y

When the approximation that V = U is made in the above equation, the
result is

W F aC
z

- L 1 2
KG—— 'a—u—SEOU CLSDU

In order to have a nondimensional expression, the correct factor must be
used
U _5F

o __z
z Sq 3u
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So that

c =-UOC -2cC (6.37)

The variation of C. with velocity is primarily due to Mach effects,
and except for the transonic regime, CL , 1is approximately zero in many
cases, Figure 6.23 shows a typical plot?

A

CL

Figwe §.23 Typical Plot of C\_ VS Mach

If the aircraft and flight conditions are such that CL ~ 0, then
u
o] = =-220C

zu L

Substituting the above equation into the expression for the phugoid
natural frequency results in

An equation showing that the phugoid natural frequency is inversely re-

lated to aircraft velocity results from substituting ¢, = E% into the

above equation.

" - 45.5 (6.38)

Where U, 1is true velocity in feet per second,

A simplified approximate expression for the phugoid damping ratio
can also be obtained and is given by

C
¢ = |22 : (6.39)

)\
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Equations 6.38 and 6.39 can be used to understand some major contributors
to the natural frequency and damping ratio of the phugoid motion.

96.8.5 EQUATION FOR n/a

Noting that the requirements of MIL~F-8785 for the short period
natural frequency are stated as a function of n/a, it is desirable to
develop a theoretical capability to predict n/a. Consider the 2z force
equation for longitudinal motion.

EAFZ =m (w - UOS)
and recall that Newton's Second Law is a directional relationship
F =ma
Thus
a, =w- Uo 9 (6.40)

where all the variables appearing in equation 6.40 are perturbations about
the equilibrium condition. Rewriting the above equation and stating that

azzn

n =U_ (= ~ 8)
o T
no=U, (a = §) (6.41)

Of course expressions for a and ¢ can be obtained from the short
period solutions for a(t) and 6(t), and an expression that gives
n(t) can be written from equation 6.41. The ratio of the magnitudes of
the n and o envelopes can then be used to determine n/a.

Using a theoretically obtained n/a along with the short period
natural frequency and damping ratio obtained from the eguations of motion
makes it possible to accomplish a design problem to check whether or not
the aircraft is being designed to comply with the MIL-F-8785.

®6.9 LATERAL-DIRECTIONAL MOTION MODES
There are three typical asymmetric modes of motion exhibited by air-
craft. These modes are the roll, spiral, and Dutch roll.
@®6.9.1 ROLL MODE

The roll mode is considered to be a first order response which
describes the aircraft roll rate response to an aileron input. Figure
6.24 depicts an idealized roll rate time history to a step aileron input.
The roll mode time constant is normally small, with a MIL-F-8785 require-
ment to be less than three seconds.
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ba

Figure 6.24 Typical Roil Mode

@®6.9.2 SPIRAL MODE

The spiral mode is considered to be a first order response which
describes the aircraft bank angle time history as ¢ tends to increase
or decrease from a small, non-zero bank angle. After a wings level trim
- shot, the spiral mode can be observed by releasing the aircraft from bank
angles as great as 20 degrees and allowing the spiral mode to occur without

control inputs. If this mode is divergent, the aircraft nose continues
to drop as the bank angle continues to increase, resulting in the name,
"spiral mode." This mode, similar to the phugoid in that a pilot can

easily control it even if it is dynamically unstable, has somewhat loose
requirements in MIL-F-8785. A typical divergent time history as shown
in figure 6.25 and might be characterized by T;, the time to double
amplitude.

t

20°

Figiwre 6.25 Typical Spiral Mode
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©96.9.3 DUTCH ROLL MODE -

The Dutch roll mode is a tightly coupled yawing and rolling motion
with a relatively high frequency. Some typical values for Dutch roll
damped period at a cruise condition are 3 seconds for the A-7, and 3
seconds for the B-58. Typically, as the aircraft nose yaws to the right .
a right roll due to the yawing motion is generated. The combination of
restoring forces and moments, damping, and aircraft inertia is generally
such that after the motion peaks out to the right, a nose left yawing mo-
tion begins accompanied by a roll to the left. This coupled right -
left - right - . . . motion often is lightly damped with a relatively
high frequency.

One of the pertinent Dutch roll parameters is ¢/8, the ratio of
bank angle to yaw angle. A very low value for ¢/8 implies little bank
action during the Dutch roll, 1In the limit when ¢/8 is zero, the Dutch
roll motion consists of a pure yawing motion that most pilots consider
less objectionable than a Dutch roll mode with a high value for ¢/3.

Another parameter than can be used to characterize the Dutch roll or
any other second order motion is the number of cycles required to damp to
half amplitude, Cl/Z'

A doublet rudder input is frequently used to excite the Dutch roll,
and figure 6.26 shows a typical Dutch roll time history.

*)
RIGHT WING DOWN (+)

)

Iy \
(+) ,

)

or ‘
NOSE RIGHT (+) |
___J >
L]

Figure 6.26 Typical Dutch Roll Mode

)

@6.9.4 ASYMMETRIC EQUATIONS OF MOTION

Similarly to the separation of the longitudinal egquations, the set
of equations which describe lateral-directional motion can be separated
from the six general equations of motion. Starting with equilibrium condi-
tions and specifying that only asymmetric forcing functions, velocities,
and accelerations exist results in the lateral-directional equations of
motion. Assuming small perturbations and using a linear Taylor Series
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approximation for the forcing functions result in the linear, lateral-
directional perturbation equations of motion

b . mu g b . mu_ 3
—— C ¢ - C ¢+ | g=—— = 57+— C p ~C Yy + =— B8 -C_ B=2C §r + C sa
2Uo yp Yy 54 o Yr 7y 9 Yg Ysr Ysa
I .- I

X b . Xz - b .
= ¢ - c b + == v - C v =C, B =2C sr + C sa
Sq 2UO 1, 5q ZUO % L, 1. sa
I I

XZ b : z - b .
= ¢ cC % + Y - C v - C. B =2C §r + C da
5q 20 Ny 8qb Z0_ N, N, N Noa

-

Note that the lateral-directional equations of motion have been non-
dimensionalized by span, b, as opposed to chord. Also, recall that the
stability derivative C)Lp is not a lift-referenced stability derivative

but that the script 1 refers to rolling moment.

It is appropriate to point out that if the products of perturbation
are not small, then the lateral-directional motion will couple directly
into longitudinal motion. This can be readily seen by examination of
the pitching moment equation and makes the point that asymmetric motion
can couple into symmetric motion. Our analysis will assume that condi-
tions are such that coupling does not exist.

©96.9.5 ROOTS OF & (S) FOR ASYMMETRIC MOTION

Laplace transforming the equations labeled 6.42 puts them into a
form that readily yields the characteristic equation for asymmetric
motion or that can be used to find the time response for some specified

input.

The roots of the lateral directional characteristic equation typically
are comprised of a relatively large negative real root, a small real root
that is either positive or negative, and a complex conjugate pair of
roots.

The large real root is the one associated with the roll mode of
motion. Note that a large negative value for this root implies a fast

time constant.

The small real root that might be either positive or negative 1is
associated with the spiral mode. A slowly changing time response results
from this small root, and the motion is either stable for a negative root
or divergent for a positive root.

The complex conjugate pair of roots corresponds to the Dutch roll
mode which frequently exhibits high frequency and light damping for SAS
off conditions. This second order motion is of great interest in handling

qualities investigations,

Figure 6.24 shows typical characteristic equation root locations
for the asymmetric motion modes.
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‘ Imaginary

Readl

Figure 6.27 Typical Roots of A (S) for Asymmetric Motion

96.9.6 '‘APPROXIMATE ROLL MODE EQUATION

This approximation results from the hypothesis that only rolling

motion exists and use of the rolling moment equation as done in Blakelock

(reference 2). The roll mode approximation equation is
Ix b .
= S = c $(8) =C sa (6.43)
Sgb ZUO lp léa

The roll mode characteristic equation root is

s, = — 2 ¢ (6.44)

Note that Cy less than zero implies stability for the roll mode and

that a larger negative value of Sy implies an aircraft that approaches
its steady state roll rate quickly. A functional aralysis can be made
using equation 6.44 to predict change trends in g, the roll mode time
constant, as flight conditions change.

@6.9.7 SPIRAL MODE STABILITY

Blakelock lists the condition for dynamic spiral stabkility, namely
that

c. Cc., >c. C
v, N No T4,
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and points out that increasing C while decreasin Cc is a reason-
p Lg El Ly

able design method if increasing spiral stability is desired. Alsoc he
lists an equation to calculate the spiral mode 4(S) root

s =39 ¢ B__r BT : (6.45)

@ 6.9.8 DUTCH ROLL MODE APPROXIMATE EQUATIONS

The approximate equations for Dutch roll motion can be obtained by
using the equations labeled 6.42 and specifying that pure sideslip exists
(8 = =-y) and bank angle is zero. While this specification is generally
not true, the result is a reasonable approximation for the Dutch roll
damping ratio and natural fregquency:

N

1

]—'1,25b3 - ——c—" d
Nef\Iz Sy

B > (6,46)

fal
]
[oe]

1
C o\ 2
sb o, | Vs
n 27 "o Iz J

An approximate functional relationship can be found for the magnitude
of ¢ to B8

)
€
]

L I
‘il =% __8 I_z p_l_U_ (6.47)
N X o]

Equation 6.47 is of value in predicting trends in ¢/8 as flight condi-
tions are changed.

96.9.9 COUPLED ROLL-SPIRAL MODE

This mode of lateral-directional motion has rarely been exhibited
by aircraft, but the possibility exists that it can indeed happen. 1If
this mode is present, the characteristic equation for asymmetric motion
has two pairs of complex conjugate roots instead of the usual one complex
conjugate pair along with two real roots. The phenomenon which occurs is
the roll mode root decreases in absolute magnitude while the spiral mode
root becomes more negative until they meet and split off the real axis
to form a second complex conjugate pair of roots, as depicted in figure
6.28.
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Figure 6.28 Coupled Roil Spiral Mode

At least two inflight experiences with this mode have been documented,
and suffice to say that a coupled roll spiral mode causes significant
piloting difficulties. One occurrence involved the M2-F2 lifting body,
and a second involved the Flight Dynamics Lab variable-stability T-33.

Some designs of V/STOL aircraft have indicated that these aircraft would
exhibit a coupled roll spiral mode in a portion of their flight envelope?,
Some pilot comments from simulator evaluations are "rolly," "requires
tightly closed roll control loop," or "will roll on its back if you don't
watch it.”

A coupled roll spiral mode can result from a high value for C;B
and a low value for Clp- The M2-F2 lifting body did in fact possess a

high dihedral effect and a quite low roll damping. Examination of the
equations for the roll mode and spiral mode characteristic equation roots
shows how the root locus shown in figure 6.25 could result as Clp de-

creases in absolute magnitude and Cgs increases.
B 6,10 STABILITY DERIVATIVES

@6.10.1 INTRODUCTION

Some of the stability derivatives are particularly pertinent in the
study of the dynamic modes of aircraft motion, and the more important ones
appearing in the functional equations which characterize the dynamic modes
of motion should be understood. CM ’ CM ’ Cl . Cl R CN , and CN are

q a P B r B
discussed in the following paragraphs.

3AFFDL-TR-65-39, Ground Simulator Elevations of Coupled Roll Spiral Mode Effects on Aircraft Haondling Qualities,
F. D. Newell, March 19645,
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©6.10.2 PARTICULAR STABILITY DERIVATIVES
051021 Cy,

This stability derivative is the change in pitching moment
coefficient with varying angle of attack and is commonly referred to as
the longitudinal static stability derivative. When the angle of attack
of the airframe increases from the equilibrium condition, the increased
1ift on the horizontal tail causes a negative pitching moment about the
center of gravity of the airframe. Simultaneously, the increased lift
of the wing causes a positive or negative pitching moment, depending on
the fore and aft location of the 1ift vector with respect to the center
of gravity. These contributions together with the pitching moment contri-
pution of the fuselage are combined to establish the derivative CMa'

The magnitude and sign of the total CMa for a particular airframe con-

figuration are thus a function of the center of gravity position, and this
fact is very important in ilongitudinal stability and control, If the cen-
ter of gravity is ahead of the neutral point, the value of CMG is

negative, and the airframe is said to possess static longitudinal sta=-
pility. Conversely, if the center of gravity is aft of the neutral point,
the value of Cpm, is positive, and the airframe is then statically un-

stable., CM is perhaps the most important derivative as far as longi-
a

tudinal stability and control are concerned, It primarily establishes

the natural frequency of the short period mode, and is a major factor in
determining the response of the airframe to elevator motions and to gusts,
In general, a large negative value of CM  (i.e., large static stability)

is desirable for good £lying qualities. However, if it is too large,
the required elevator effectiveness for satisfactory control may become
unreasonably high. A compromise is thus necessary in selacting a design
range for Cy,. Design values of static stability are usually expressed

not in terms of CMa put rather in terms of the derivative CMCLr where
the relation is: CM_, = CMCy Cr,. It should be pointed out that Cycp in

the above expression is actually a partial derivative for which the forward
speed remains constant.

0610.2.2 Cy

The stability derivative CMq is the changs in pitching moment co-

efficient with varying pitch velocity and is commonly raferred to as the
pitch damping derivative, As the airframe pitches about its center of
gravity path, the angle of attack of the horizontal tail changes, and a
iift force is developed on the horizontal tail producing a negative pitch-
ing moment on the airframe and hence a contribution to the derivative

CM_.. Thers is also a contribution to CMq because of various "deadweight"

aercelastic effects. Since the airframs is moving in a curved flight path
due to its pitching, a centrifugal force is developed on all the components
of the airframe. The force can cause the wing to twist as a result of the
dead weight moment of overhanging nacelles, and can cause the horizontal
tail angle of attack to change as a result of fuselage bending due to the
welight of the. tail section. 1In low speed flight, CMq comes mostly from
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the c¢ffect of the curved flight path on the horizontal tail and its sign

is negative. In high speed flight the sign of CuM can be positive or
negative, depending on the nature of the aercelastic effects. The deriva-
tive CMm is very important in longitudinal dynamics because it contributes
a4 major portion of the damping of the short period mode for conventional
aircraft. As pointed out, this damping effect comes mostly from the hori-
zontal tail. For tailless aircraft, the magnitude of Cm is consequently
small; this is the main reason for the usually poor damping of this type

of uonflguratlon. is also involved to a certain extent in the damp- -
ing of the phugoid moge In almost all cases, high negative wvalues of

M are desired. 1In the light of the present design trend toward larger
radii of gyration in pitch and high altitude flight, it is believed that
consideration of CpM is necessary in the preliminary design stage.

£

51023 Cy.

This stability derivative is the change in rolling moment
coefficient with variation in sideslip angle and is usually referred to
4s the "effective dihedral derivative." When the airframe sideslips, a
rolling moment is developed because of the dihedral effect of the wing
and because of the usual high position of the vertical tail realtive to
the equilibrium x-axis. No general statements can be made concerning the
rclative magnitudes of the contributions to CgB from the wvertical tail

and from the wing since these contributions vary considerably from airframe N
Lo airframe and for different angles of attack of the same airframe. Cy -
i5 nearly always negative in sign, signifying a negative rolling rmoment

for a positive sideslip. ) _

The derivative C is very important in lateral stability and con-
g P

trol, and it is therefore usually considered in the preliminary design of
an airframe. It is involved in .damping both the Dutch roll mode and the
spiral mode. It is also involved in the maneuvering characteristics of
an airframe, especially with regard to lateral control with the rudder
alonc near stall.

®6.10.24 C¢
“p

The stability derivative, Cy_, 1is the change in rolling moment
cocfficient with change in rolling velocity and is usually known as the
rcell damping derivative., When the airframe rolls at an angular velocity
p, a rolling moment is produced as a result of this velocity; this moment
oppusces the rotation. Cgp is composed of contributions, negative in sign,

from the wing and the horizontal and wvertical tails. However, unless the
size of the tail is unusually large in comparison with the size of the
wing, the major portion of the total Cgp comes from the wing.

The derivative Cgp is quite important in lateral dynamics because

essentially Cgp alone determines the damping in roll characteristics

of the aircraft. Normally, it appears that small negative values of Cy

are more desirable than large ones because the airframe will respond s
better to a given aileron input and will suffer fewer flight perturbations

due to gust inputs.
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®6.10.2.5 Cyp,

The stability derivative, Cy,, 1s the change in yawing mowrent co-
efficient with variation in sideslip angle. It is usually referred to as
the static directional derivative or the "weathercock" derivative. When
the airframe sideslips, the relative wind strikes the airframe obliguely,
creating a yawing moment, N, about the center of gravity. The major
portion of Cyg comes from the vertical tail, which stabilizes the body
of the airframe just as the tail feathers of an arrow stabilize the arrow
shaft. The Cyg contribution due to the vertical tail is positive, sig-
nifying static directional stability, whereas the Cy due to body is
negative, signifying static directional instability. There is also a
contribution to CNg from the wing, the value of which is usually posi-
tive but very small compared to the body and vertical tail contributicns.

The derivative CNg is very important in determining the dynamic
lateral stability and control characteristics. Most of the references
concerning full-scale flight tests and free-flight wind tunnel model
tests agree that Cng should be as high as possible for good flying quali-
ties. A high value of CNg aids the pilot in effecting coordinated
turns and prevents excessive sideslip and yawing motions in extreme
flight maneuvers and in rough air, CNg primarily determines the natural
frequency of the Dutch rcll oscillatory mode of the airframe, and it is
also a factor in determining the spiral stability characteristics.

©6.10.26 Cy

The stability derivative Cy, is the change in yawing moment co-
efficient with change of yawing velocity. It is known as the yaw damping
derivative, When the airframe is yawing at an angular velocity r, a
yawing moment is produced which opposes the rotation. Cn, 1is made up
of contributions from the wing, the fuselage, and the vertical tail, all
of which are negative in sign. The contribution from the vertical tail
is by far the largest, usually amounting to about 80 or 90 percent of the
total Cy, of the airframe.

The derivative CN, 1is very important in lateral dynamics because
it is the main contributor to the damping of the Dutch roll oscillatory
mode., It also is important to the spiral mode. For each mode, large nega-
tive values of CNr are desired.

W6.11 PILOT EXTIMATION OF SECOND ORDER MOTION
Pilot-observed data can be used to obtain approximate values for the

damped frequency and damping ratio for second order motion such as the
short period or Dutch roll.

@6.11.1 ESTIMATION OF «wy

To obtain a value for wg, the pilot needs merely to observe the
number of cycles that occur during a particular increment of time.
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Then,

Number of Cycles _
fd Time Increment = cycles/sec (6.47)
And
= cycles 27 _radians | _ .
wyg 4 —sec Sycls radians/sec

The number of cycles can be estimated either by counting peaks or zeroes
of the appropriate variable. For short period motion, perturbed 8 1is
easily observed, and if counting zerces is applied to the motion shown
in figure 6.29 the result is

7 (5 - 1)
fd = =——g—— = .5 cycles/sec

A

PN
N’

[ ————— 4 Seconds————>>{

~Y

Free Response Starts Here

Figure 6,29 Second Order Motion

If zeroes are counted, then

é (number of zeroces - 1)

fd - (Time Increment) cycles/sec

@6.11.2 ESTIMATION OF {

The pilot can obtain an estimated value for ¢ by noting the number
of peaks that exist during second order motion and using the approximation
5 %~ (7 - Number of Peaks) (6.48)

0
for .1 < ¢ < ,7
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The motion shown in figure 6.29 thus has an acgproxiraze

1

czl—0(7-4)= .3

Note that the peaks which occur during aircraft free response are

the ones to be used in eguation 6.48. If zerc observable peaks sxist
during a second order motion, the best estimate for the value of : .3
then "heavily damped, .7 or greater." 1If seven or more peaks are ob-

served, the best estimate for the value of ¢ 1s "lightly damped, .1 or
less."
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VOLOME 1
CHAPTER

POST-STALL GYRATIONS/SPINS

REVISED FEBRUARY 1977

8 1.1 INTRODUCTION

"0Of the myriad of coupled motions which
an airplane can perform, the spin stands
out as being unique. When an airplane
is stalled and left to itself, it will
perform some sort of rolling, yawing

and pitching motion which, if allowed to
continue, may develop into a characteris-
tic motion called a spin, in which the
airplane descends rapidly toward the
earth in a helical movement about the
vertical axis at an angle of attack be-
tween the stall and 90°." (Reference 1,
page 2)

From this classical descriptlon it is clear that an aircraft spin
is an extremely complex maneuver simultaneously invelving pitch, roll,
and yaw rates along with extreme angles of attack and large angles of
sideslip. It is indeed more complex than the description. In the ini-
tial stages, the aircraft will still have some of its translational
velocity, and the aircraft can spin at angles of attack greater than 90
degrees.

Recently a renewed interest in the high angle of attack (AOA) flight
regime has generated considerable interest in designing to avoid the
spin entirely in tactical aircraft. Clearly such design goals are
worthy, and a whole set of terms (not necessarily new) has been redefined
co make more explicit the requirements which hopefully will make spin
resistant tactical aircraft a reality. Words like "departure," stall,"
"post-stall gyration (PSG)," and "spin" itself have taken on different
shades of meaning since the publication of reference 2. Given the com-
plicated motions associated with a PSG or a spin and the explicit re-
guirements now imposed by references 2 and 3, it is imperative that the
test pilot clearly understand the precise terminology of the high 20a
flight regime.

@7.1.1 DEFINITIONS

@ 7.1.1.1 Stall Versus Qut-of-Control.

Stalls and associated aerodynamic phenomena have been described
completely in chapter 2, but it is worth repeating the formal definition
of a stall from page 67 of reference 3. 1In terms of angle of attack,
the stall is defined as the lowest of the following:

a. Angle of attack for the highest steady load factor, normal to the
flightpath, that can be attained at a given speed or Mach number.
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b. Angle of attack, for a given speed or Mach number, at which abrupt
or uncontrollable pitching, rolling, or yawing occurs. Angular
limits of 20 degrees (Classes I, II, or III) or 30 degrees (Class
IV) are specified in paragraph 3.4.2.1.2 of reference 3.

c. Angle of attack, for a given speed or Mach number, at which in-
tolerable buffeting is encountered.

d. An arbitrary angle of attack, allowed by paragraph 3.1.9.2.1 of
reference 3, which may be based on such considerations as ability
to perform altitude corrections, excessive sinking speed, or .
ability to execute a go-around.

Reference 2 defines the stall angle of attack more simply: The angle

of attack for maximum usable lift at a given flight condition. This
latter definition is the one most useful in this course, but the student
must understand that "maximum usable 1lift" is determined from one of the
four conditions given above. '

®7.1.1.2 Departure.

Departure is defined as that event in the post-stall flight regime
which precipitates entry into a PSG, spin or deep stall condition (refer-
ence 2, paragraph 6.3.9). Notice two things about this definition. First,
departure occurs in the post-stall flight regime; that is, .the stall al-
ways precedes departure. It can be inferred then that the angle of attack
for maximum usable lift is always less than the angle of attack at which
departure occurs. The second point is that only one of three motions .
may result after departure - the aircraft enters either a PSG, spin or
deep stall (of course, a PSG can progress into a spin or deep stall).
Implicit in this definition is the implication that an immediate recovery
cannot be attained. For example, a light aircraft whose stall is defined
by a gy-break, may recover immediately if the longitudinal control pressure
is relaxed. However, note that movement or position of controls is not
mentioned in the definition. The same light aircraft that would not de-
part if control pressures were relaxed at the stall may depart and enter
a spin if pro-spin controls are applied at the stall. Hence, in discussing,
Susceptibility or resistance to departure one must specify control posi-
tions as well as loading and configuration.

The departure event is usually a large amplitude, uncommanded, and
divergent motion. Such descriptive terms as nose slice or pitch-up are
commonly used to describe the event. Large amplitude excursions imply
changes in yaw, roll, or pitch greater than 20 degrees (class I, II, and
III) or 30 degrees (class IV) (reference 3, paragraph 3.4.2.1.2). Un-
commanded motions are motions not intended by the pilot, even though the
control positions are legitimately causing the departure. The aircraft
may not follow the pilot's commands for a number of reasons: the high
angle of attack may render the control surface ineffective when moved
to its desired position; or the pilot may be unable to position the stick
to put the surface in the desired position due to lateral or transverse
g loads. 1In either of these conditions the aircraft motion is "uncom— -
manded." Finally, a divergent motion is one which either continuously
or periodically increases in amplitude. The T-33 usually exhibits a
"bucking" motion after the stall in which the nose periodically rises
and falls. However, the motion is not divergent unless aggravated by
full aft stick or some other pro-spin control. The T-38 will sometimes
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exhibit a non-divergent lateral oscillation near the stall angle of
attack. Neither of these motions are normally counted as departures,
though their occurrence does serve as warning of impending departure if
further misapplications of controls are made. With this sort of back-
ground it is easy to see why a departure is so hard to define, yet is
relatively easy for a pilot to recognize. Next one must examine the
terms "post-stall gyration", "spin" and "deep stalls", used to define

a departure.

@ 7.1.1.3 Post-Stall Gyration.

A post-stall gyration is an uncontrolled motion about one or more
axes following departure (reference 2, paragraph 6.3.10). PSG is a very
difficult term to define concisely because it can occur in so many dif-
ferent ways. Frequently, the motions are completely random about all
axes and no more descriptive term than PSG can be applied. On the other
hand a snap roll or a tumble are post-stall gyrations. The main diffi-
culty lies in distinguishing between a PSG and either the incipient
phase of a spin or an oscillatory spin. The chief distinguishing
characteristic is that a PSG may involve angles of attack that are in-
termittently below the airplane's stall angle of attack, whereas a spin
always occurs at angles of attack greater than stall.

®7.1.1.1 Spin.

A spin is a sustained yaw rotation at angles of attack above the
aircraft's stall angle of attack (reference 2, paragraph 6.3.11). This
definition bears a bit of explanation in that a spin is certainly not
altogether a yaw rotation. Only the perfect flat spin (a = 90 degrees)
could satisfy that constraint. The inference is, however, that the yaw
rotation is dominant in characterizing a spin. Indeed, to a pilot, the
recognition of a sustained (though not necessarily steady) yaw rate is
probably the most important visual cue that a spin is occurring. Even
though roll rate and yaw rate are often of nearly the same magnitude,
the pilot still ordinarily recognizes the spin because of the yaw rate.
In steep spins (with a relatively close to ag) it is guite easy to con-
fuse the roll rate and yaw rate and pilots sometimes have difficulty in
recognizing this type of motion and treating it as a spin. The steep
inverted spin is particularly confusing since the roll and yaw rates are
in opposite directions. Once again though, the yaw rate determines the
direction of the spin and the required control manipulations to recover.
All in all, it is well to remember that the spin is truly a complicated
maneuver involving simultanecus roll, pitch, and yaw rates and high angles
of attack. And, even though the overall rotary motion in a spin will
probably have oscillations in pitch, roll, and yaw superimposed upon it,
it is still most easily recognized by its sustained yawing component.

@7.1.1.5 Deep Stall.

A deep stall is an out-of-control flight condition in which the
airplane is sustained at an angle of attack well beyond that for ag
while experiencing negligible rotational velocities (reference 2, para-
graph 6.3.12). It may be distinguished from a PSG by the lack of
significant motions other than a high rate of descent. The deep stall
may be a fairly stable maneuver such as a falling leaf, or it can be
characterized by large amplitude angle of attack oscillations. For an
aircraft to stay in a deep stalled condition, significant oscillations




must be limited to the longitudinal axis. Lateral and directional con-
trol surfaces are either stalled or blanked out. Depending-on the
pitching moment coefficient, recovery may or may not be possible.

@ 7.1.0 SUSCEPTIBILITY AND RESISTANCE TO DEPARTURES AND SPINS:

Susceptibility/resistance to departures and spins has become an
extremely important design goal for the generation of high performance
aircraft presently in the design stage. Reference 4 offers convincing
proof that such design emphasis is in fact overdue. But, for the de-
signer to meet this requirement in an aircraft and for the test pilot
to test against this requirement, it is essential that the words “"sus-
ceptible" and "resistant" be understood alike by all concerned.

®7.1.2.1 Extremely Susceptible to Departure (Spins). (PHASE A)

An aircraft is said to be extremely susceptible to departure (spins)
if the uncontrolled motion occurs with the normal application of pitch
control alone or with small roll and yaw control inputs. The only allow-
able roll and yaw control inputs are those normally associated with a
given maneuver task. In short, an airplane that departs or enters a
spin during Phase A of the flight test demonstration falls within this
category (reference 2, paragraph 3.4.1.8).

@ 7.1.2.2 Susceptible to Departure (Spins). (PHASE B)

An aircraft is said to be susceptible to departure (spins) when the
application or brief misapplication of pitch and roll and yaw controls
that may be anticipated in normal operational use cause departure (spin).
The amount of misapplied controls to be used will be approved by the
procuring activity for Phase B of the flight test demonstration. In
other words each aircraft will be stalled and aggravated control inputs
will be briefly applied to determine departure (spin) susceptibility.

©7.1.2.3 Resistant to Departure {Spins). (PHASE C)

An aircraft is said to be departure (spin) resistant if only large
and reasonably sustained misapplication of controls results in a de-
parture (spin). "Reasonably sustained"” means up to 3 seconds before re-
covery is initiated (reference 2, table I). This time delay may be in-
creased for aircraft without positive indication of impending loss of
control. This aircraft departs (spins) during Phase C of the flight
test demonstration.

®7.1.2.1 Extremely Resistant to Departure (Spins). (PHASE D)

An aircraft is said to be extremely resistant to departure (spins)
if these motions occur only after abrupt, inordinately sustained applica-
tion of gross, abnormal, pro-departure controls. Aircraft in this cate-
gory will only depart (spin) in Phase D of the flight test demonstration
when the controls are applied and held in the most critical manner to
attain each possible mode of post-stall motion and held for various
lengths of time up to 15 seconds or three spin turns, whichever is longer.
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@7.1.3 SPIN MODES:

Adjective descriptors are used to describe general characteristics
of a given spin and these adjectives specify the spin mode. Average
values of angle of attack, for example, would allcw categorization of

the spin as either upright (positive angle of attack) cr invertad (nega-

tive angle of attack). An average value of angle of attack would also
allow classificaticon of a spin as either flat (high angle of attack) or
steep (lower angle of attack). Finally, the average value of the ro-
tational rate compared with the oscillations in angular rates about all
three axes determines the oscillatory character of the spin. One des-
criptive modifier from each of these groups may be used to specify the
spin mode.

Table I

SPIN MODE MODIFIERS

Group 1 Group 2 Group 3
Upright Steep Smooth
Mildly Oscillatory
Inverted Flat Oscillatory
Highly Oscillatory
Violently Oscillatory

The most confusing thing about mode identification is the proper
use of group 2 and group 3 modifiers. Perhaps the following tabulated

data, extracted from reference 5, will provide insight for understanding

how to use these terms.

Table II

F-4E SPIN MODES

Average AOA Pitch
AOA Oscillations Yaw Rate Roll Rate Rate
Mode (deq) (deg) (deq/sec) (deg/sec) (deg/sec)
Steep-Smooth 42 +5 40-50 50 15
Steep-Mildly Oscillatory 45-60 +10 45-60 - -
Steep-Oscillatory 50-60 +20 50-60 Same as -
(with large yaw rate
oscillations)
Flat-Smooth 77-80 Negligible 80-90 25 7

Note:

It was called

"highly oscillatory” with angle of attack excursions of +30 degrees.

One mode reported in reference 5 has been omitted from this table because the
terminology did not fully conform to that of reference 2.
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@7.1.4 SPIN PHASES:

A typical spin may be divided into the phases shown in figure 7.1

DEPARTURE 14 \ENT PHASE
AND/OR PSG QP

ROTATION
BEGNS

—_ _.—7/7//

T

THE BOUNDARIES
BETWEEN PHASES
ARE NOT ALWAYS
DISTINCT OR WELL

DEVELOPED PHASE l
DEFINED

INITIATION OF RECOVERY
CONTROLS AND

RECOVERY
PHASE
T

LEVEL FLIGHT

!
I
|
I
t
FIGURE 1.1 SPIN PHASES

®7.1.4.1 Incipient Phase.

The incipient phase of a spin is the initial, transitory part of
the motion during which it is impossible to identify the spin mode.
However, notice in figure 7.1 that the yaw rotation begins as the in-
cipient phase begins; that is, the visual cue to the pilot is of a sus-
tained (though by no means steady) yaw rotation. A further distinction
between the PSG (if one occurs) and the incipient phase of the spin is
that the angle of attack is continuously above the stalled angle of
attack (oag) for the aircraft, in the incipient phase of the spin.

During a PSG the angle of attack may intermittently be less than ag.
This incipient phase continues until a recognizable spin mode develops,
another boundary very difficult to establish precisely. In fact the
test pilot may not recognize such a mode until he has seen it several
times; but careful examination of data traces and film may reveal that
a "recognizable" mode had occurred. 1In this case "recognizable" does
not necessarily mean recognizable in flight, but distinguishable to the
engineer from all available data. In short, the incipient phase of the
spin is a transitory motion easily confused with a PSG, but distinctly
different from either a PSG or the developed phase of the spin.
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©7.1.4.2 Developed Phase.

The developed phase of a spin is that stage of the motion in which
it is possible to identify the spin mode. During this phase it is common
for oscillations to be present, but the mean motion is still abundantly
clear. The aerodynamic forces and moments are not usually completely
balanced by the corresponding linear and angular accelerations, but at
least equilibrium conditions are being approached. Generally it is
evident in the cockpit that the developed phase is in progress, though
the exact point at which it began may be quite fuzzy. Since the aircraft
motion is approaching an equilibrium state, it is frequently advisable
to initiate recovery before eguilibrium is achieved. For example, dur-
ing the 7-38 test program warning lights were installed to signal a
buildup in yaw rate. Test pilots initiated recovery attempts when these
lights came on. Still, in the flat spin mode with recovery initiated
at 85 degrees per second, a peak yaw rate of 165 degrees per second was
achieved. The longitudinal acceleration at the pilot's station was
approximately 3.5 g and the spin was terminated by deployment of the
spin chute (reference 6, pages 10, 1ll). The developed spin, while it
may be more comfortable due to less violent oscillations, can be de-
ceptively dangerous, and the spin phase which follows can be disastrous.

® 7.1.1.3 Fully Developed Phase.

A fully developed spin is one in which the trajectory has become
vertical and no significant change in the spin characteristics is noted
from turn to turn. Many aircraft never reach this phase during a spin,
but when they do, they are often very difficult to recover. The smooth,
flat spin of the F-4 is a classic example in which this phase is attained
and from which there is no known aerodynamic means of recovery. But a
fully developed spin obviously requires time and altitude %o be generated:
how much time and how much attitude are strong fuctions of entry condi-
tions. As a general rule, departures that occur at high airspeeds (high
kinetic energy) reguire more time and altitude to reach the fully de-
veloped phase than departures which occur at low kinetic energy. Finally,
the spin characteristics which remain essentially unchanged in the fully
developed phase include such parameters as time per turn, body axis
angular velocities, altitude loss per turn, and similar guantities. How-
ever, the definition does not prohibit a cyclic variation in any of these
parameters. Hence, a fully developed spin can be oscillatory.

With this rather lengthy set of definitions in mind it is now
appropriate to look more closely at spinning motions and at the aero-
dynamic and inertial factors which cause them and the PSG.

B7.2 THE SPINNING MOTION

Because the PSG is a random and usually a highly irregular motion,
it is very difficult to study. On the other hand, the spin can approach
an equilibrium condition and is therefore much more easily understood.
Further, since the PSG is affected by the same aerodynamic and mass
loading characteristics as the spin, an understanding of the spin and
the factors affecting it are appropriate to the purposes of this course.
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@7.2.1 BESCRIPTION OF FLIGHTPATH:

An aircraft spin is a coupled motion at extreme attitudes that re-
quires all six equations of motion for a complete analysis. It is
usually depicted with the aircraft center of gravity describing a helical
path as the airplane rotates about an axis of rotation. PFigures 7.2
shows such a motion. Notice that "the spin axis of rotation may be curved
and that the spin vector w is constantly changing. Such a motion is
highly complex, but by making some approximations a simplification re-
sults which can be very useful in understanding the spin and its causes.

FIGURE 7.2 HELICAL SPIN MOTION

In a fully developed spin with no sideslip the spin axis is verti-
cal as indicated in figure 7.3.
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AXIS OF
ROTATION

RELATIVE WIND

FIGURE 7.3 FORCES IN A STEADY SPIN MITHOUT SIDESLIP

If one ignores the side force, the resultant aetrodynamic force acts
in the x-z plane and is approximately normal to the wing chord. Taking
the relative wind to be nearly vertical, a summation of vertical forces
gives:

[9]

W=D=-]2'—0V25C (7.1)

o
A similar summation of horizontal forces suggests that the lift component

balances the so-called centrifugal force so that

mr." = L = % p V'S CL (7.2)

Equation 7.1 suggests that as AOA increased (and Cp increased) the rate

of descent (V) must decrease. Furthermecre, at a stalled AOA, Ci, decreases
as AOA increases. With these two facts in mind it is clear that the

left hand side of equation 7.2 must decrease as the AOA increases in a
spin. The rotation rate, w, as will be shown later, tends to increase

as AOA increases; hence, the radius of turning r must decrease rapidly
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as AOA increases. These observations point up the fact that in a fully
developed spin « and the relative wind are parallel and become more
nearliy coincident as the AOA increases. In fact the inclination (n) of
the flightpath (relative wind) to the vertical is given by

tan n = éﬁ

A typical variation of n with AOA is from abeout 5.5 degrees at a = 50
degrees to 1 degree at « = 80 degrees (reference 7, page 533). So, it
is not farfetched to assume that w is approximately parallel to the
relative wind in a fully developed spin.

All of these observations have been made under the assumption that
the wings are horizontal and that sideslip is zero. These effects,
while extremely important, are beyond the scope of this course, but
references 7 and 8 offer some insight into them. It is also noteworthy
that this simplified analysis is valid only for a fully developed spin.
However, the trends to be noted and an understanding of the underlying
physical phenomena will give the student a greater appreciation of the
other phases of the spin and of the post-stall gyration.

@ 722 AEROCYNAMIC FACTORS:

In the post-stall flight regime the aircraft is affected by very
different aerodynamic forces than those acting upon it during unstalled
flight. Many aerodynamic derivatives change sign; others which are in-
significant at low angles of attack become extremely important. Probably
the most important of these changes is a phenomenon called autorotation
which stems largely from the post-stall behavior of the wing.

®7.2.2.1 Automtative Couple of the Wing.

If a wing is operating at aj {(low angle of attack) and experiences
a Az due to wing drop, there is a restoring moment from the increased
lift. 1If, on the other hand, a wing operating at s2 (a2 > ug) experi-
ences a sudden drop, there is a loss of lift and an increase in drag
that tends to prolong the disturbance and sets up autorotation. These
aerodynamic changes are illustrated in figure 7.4.

(<)ACL - TENDS TO FURTHER
DROP THE WING AND PROLONG
A ROLLING MOMENT. ¢, - ¢

oL
|
cL __J(-\Ac;. l LARGEACpD TENDS TO RETREAT
b

AND THE WING FURTHER INCREASING
Co QAND FORCING A YAWING MOTION

/1 SMALL ACD

b
>
J’)
g ——
Qe

FIGURE 7.4 CHANGESIN C_AND Cp WITH a<:5 AND 2>cg
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Consider now a wing flying in the post-stall region of figure 7.4
and assume that some disturbance has given that wing an increase in a
which tends to set up a yawing and rolling motion to the right as shown
in figure 7.5. The angle of attack of the advancing wing (section A)
corresponds to ap in figure 7.4 while the angle of attack of the retresat-
ing wing (section R) corresponds to ap + b8a in figure 7.4. Figure 7.6
shows these two sections and illustrates why the advancing wing is
operating at a lesser angle of attack than the retreating wing. In each
case the velocity vectors are drawn as they would be seen by an observer
fixed to the respective wing section. The difference in resultant aero-
dynamic force Rjy - Ry acting at section A will, in genéral, be a force

AF, depicted in figure 7.7. Notice that 4Fyx is in a positive x-direc-
tion, while 4F,; is in a negative z-direction. AFx forms a couple as
depicted in figure 7.8 which tends to sustain the initial yawing moment
to the right. Of course, AF, contributes a similar rolling ccuple about
the x-axis which tends to sustain the initial rolling moment to the
right. Ordinarily, the autorotative couples generated by the wing are
the most important aerodynamic factors causing and sustaining a spin.
However, the other parts of the aircraft alsc have a part to play.

RETREATING
WING

—71
ADYANCING » Y
WING
A R
FIGURE 7.5 PLAN VIEW OF AUTOROTATING WING
Ra

RETREATING WING

ADVANCING WING SECTION
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)
z
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w
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e

FIGURE 7.6 DIFFERENCE IN ACA FOR THE ADVANCING AND RETREATING WING IN AUTOROTATION
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AF\{ YAW SUSTAINING
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2o ]
I

- = AF JSTAINTY
Fa, Fr,, 5F, ROLL SUSTAINING

FIGURE 7.8 AUTOROTATIVE YAWING COUPLE

® 7222 Fuselage Cantrbution.

The aerodynamic forces on the fuselage at stalled angle of attack
are very complex, are highly dependent on fuselage shape, and may either
oppose or increase the autorotative couples. Sidewash flow over the
fuselage greatly affects the dihedral effect (Cz,) and may even increase

it to values greater than those observed for unstalled flight (reference
7, page 529). Weathercock stability (Cne) will also be affected signifi-

cantly by sidewash flow over the fuselage. As an example of the possible
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contributions of the fuselage to the autorotative couple consider the
effects of fuselage shape as illustrated in figure 7.9. The fuselage

in figure 7.9a acts much like an airfoil section and may well generate

a resultant aerodynamic force which would contribute to the yawing auto-
rotative couple. Of course the fuselage shape will determine the rela-
tive sizes of "lift" and "drag" contributed by the rotating nose section.
A box-like fuselage cross-section will probably give a resultant aero-
dynamic force opposing the yaw autorotation. An extreme example of this
type of fuselage cross-section reshaping is the strakes added to the nose
of the T~37, as in figure 7.9b. Clearly the flow separation produced

by the strakes in a flow field with considerable sidewash reorients the
resultant aevodynamic force in such a way as to produce an anti-spin
yawing moment. Such devices have also been proposed (and tested) for
the F-100, F-106, and F-111.

Rx

CONTRIBUTES TO AUTOROTATIVE
YAWING MOMENT

HINDERS AUTOROTATIVE
YAWING MOMENT

RELATIVE .-

WIND ’
/

FIGURE T.9A PLAIN FUSELAGE

FIGURE 1.98 FUSELAGE WITH STRAKES
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©7.2.2.3 Changes in Other Stability Derivatives.

All of the other stability derivatives, especially those depending
on the lift curve slope of the wing, behave in a different manner in the
post-stall flight regime. However, a fuller discussion of the post-stall

behavior of such derivatives as Cgp, Cnp, Cnr, and corbinations of these

derivatives is given in reference 7, page 529. For the purposes of this
course it suffices to say that Cgp becomes positive and Cnp may become

positive in the post-stall flight regime; Cnr may also become greater

in stalled flight. Each of these changes contributes to autorotation,
the aerodynamic phenomenon which initiates and sustains a spin. However,
aerodynamic considerations are by no means the only factors affecting

the post-stall motions of an aircraft. The inertia characteristics are
equally important.

7.2.3 AIRCRAFT MASS DISTRIBU TION:
®7.2.3.1 Principal Axes.

For every rigid body there exists a set of principal axes for which
the products of inertia are zero and one of the moments -of inertial is
the maximum possible for the body. For a symmetrical aircraft, this
principal axis system is frequently quite close to the body axis system.
For the purpose of this course, the small difference in displacement is
neglected, and the principal axes are assumed to lie along the body axes.
Figure 7.10 illustrates what the actual difference might be.

X 800Y (1}

FROM SYMMETRY
¥ 800Y « Y PRIKCIFAL
hoa oy,

X PRINCIPAL (1, )
.
2 800Y (t,)

ZPRINCIPAL 1, )
.

FIGURE 7.10 BODY AND PRINCIPAL AXES PROXIMITY

@7.2.3.2 Radius of Gyration.

The center of gyration of a body with respect to an axis is a point
at such a distance from the axis that, if the entire mass of the body
were concentrated there, its moment of inertia would be the same as that
of the body. The radius of gyration (K) of a body with respect to an
axis is the distance from the center of gyration to the axis. 1In equa-
tion form

7.14



2 2 _ - 2
f{y® + 2%) dm = Ix = Kx m

2 2 2

+ dm =I_ =K "m
I (x z”) dm y y
f(x2 + y2) dm = Iz = K 2m
or 2
K= I./m,
i i
(7.3)

i=x,y, or 2z

@7.2.3.3 Relative Aircraft Density.

A nondimensional parameter called relative aircraft density (u) is
frequently used to compare aircraft density to air density.

_m/Sb _ m 7.4
PTS " pSb ( )

@ 7.2.3.4 Relative Magnitude of the Moments of Inertia.

The aircraft mass distribution is frequently used to classify the
aircraft according to loading. Because aircraft are "flattened" into
the XY plane, I, is invariably the maximum moment of inertia. Iy is
greater or less than Iy depending on the aircraft's mass distribution.
The relative magnitudes of the moments of inertia are shown in figure
7.11. As will be seen in the next paragraph the relative magnitudes of
Ix, Iy, and Iz are of utmost importance in interpreting the equations
of motion.
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FIGURE 7.11 AIRCRAFT MASS DISTRIBUTION
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W 7.3 EQUATIONS OF MOTION

Maneuvers within the post-stall flight regime can be analyzed by
using all six equations of motion and integrating them numerically on a
computer. From such studies, predictions of rate of rotation, angle of
attack, magnitude of the oscillations, optimum recovery techniques, and
other parameters can be made. However, such studies must use rather in-
accurate theory to predict stability derivatives or else depend on wind
tunnel data or free flight model tests to provide the aerodynamic data.
Hence, many researchers prefer to rely almost completely on model tests
for predictions prior to flight tests. Correlation between model tests
and aircraft flight tests is generally good. But model tests also have
limitations. Spin tunnel tests primarily examine developed or fully
developed spins; there is no good way to investigate PSG's or the in-
cipient phase of the spin in the spin tunnel. Reynolds number effects
on both spin tunnel and free flight models make it very difficult to
accurately extrapolate to the full scale aircraft. Engine gyroscopic
effects are not often simulated in model tests. Finally, model tests
are always done for a specific aircraft configuration, which is a dis-
tinct advantage for a flight test program even though it does not suit
the purposes of this course. However, it would be foolish to ignore
either computer analyses or model tests in preparing for a series of
post-stall flight tests. For obvious reasons, this course will be re-
stricted to a much simplified look at the eguations of motion as applied
to a fully developed spin.

@ 7301 ASSUMPTIONS:

The analytical treatment used in these notes is based on many
simplifying assumptions, but even with these assumptions good qualitative
information can be obtained. The most important assumption is that only
a fully developed spin with the wings horizontal will be considered. The
wings horizontal, fully developed spin involves a balance between ap-
plied and inertial forces and moments. Some of the ramifications of this
assumption are:

a. Initiatly, it will also be assumed that the applied moments consist entirely of
aerodynamic ones, although other factors will be considered in later paragraphs.

h. With tiie wings horizontal, w lies entirely within the xz plane. Also, with the
aervdynamic and inertia forces balanced, q = 0, ie w =p i + r k.

¢. The rate of descent (V) 1is virtually constant, as is altitude loss per turn.

d. Vo oand w  are parallel.

e. The time per turn is constant, or w 1is constant. Hence,

® 7.3.2 GOVERNING EQUATIONS:

The reference frame for expressing moments, forces, accelerations,
etc., is the xyz body axis frame which rotates at the same rate as the
spin rotation rate w. The origin of the Xyz axes is centered at the
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aircraft's cg and translates downward at a rate equal to the constant
rate of descent V. With this background the forces acting on the air-
craft can be examined.

@7.3.2.1 Forces.

The external forces applied to the aircraft and expressed in an
inertial reference frame follow Newton's second law.

F=m?V

Expressing V in the xyz reference frame,

F=m(\7+;x\7)

But since V is constant in the fully developed spin and since @ and V
are parallel,

The elimination of the force eguations in this fashion merely reinforces -
the idea that the rotary motion is the important motion in a spin and one
would expect the significant equations to be the moment equations.

@7.3.2.2 Moments.

The moment equations to be considered have already been developed
in Chapter II and are repeated below.

Gx = p Ix + gr (Iz - Iy) - (r + pqg) Ixz (7.5)
G, =4I -opr (I, -1I.) + (p°-1%) 1 (7.6)
Y Y z X Xz °

Gz = y Iz + pg (Iy - Ix) + (gr - p) Ixz (7.7)

Utilizing the assumption that the body axes xyz are also principal axes
and considering G to consist of aerodynamic moments only, these equations
become :
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U = . _

~'e pI,*qr (I, -1 —+ ROLLING MOMENT (7.8)

77 =al,-pr (I, - 1) = PITCHING MOMENT (7.9}
(7.10)

7(., = £ I, +pq (Iy - 1) —+ YAWING MOMENT

Solving for the angular accelerations shows the contributions of each
type of moment to that acceleration.

/ I -1I
_ Z y ~ I;
P = I + T qr (7.11)
x x
= 1 -1
é = _.f_/_z— + _z_____x pr (7.12)
I I
Yy Y
- 72 Iy -1
b = o + ——T———X p g (7.13)
z z
aerodynamic. inertial
term term

The body axis angular accelerations can also be expressed in terms of
aerodynamic coefficients and the relative aircraft density.

et %DVZSb 2
Ix K 2 n L 2m K 2 2
x pSb "x
V2
=2x2C1
uX

In a similar manner,

It is common practice in post-stall/spin literature to define Cp
on the basis of wingspan instead of on the basis of wing chord as is
done in most other stability and control work. This change is made to
allow a consistent definitfion of u:

o
pSb

and is indicated by a second subscript; that is, Cm becomes Cm b Then, 7.19

where py =




VZCQ I - Iz
5 = . & qr (7.14)
2qu b4
2
v C I -1
q = ___E%E + —E—T——i pr {7.15)
2uK
H y Y
VZC IX - I
r = ——2-2- + ——I——X jelef (7.16)
ZUKZ z

With this brief mathematical background it is now appropriate to consider
the aerodynamic prerequisites for a fully developed spin to occur.

@7.3.3 AERODYNAMIC PREREQUISITES:

For a fully developed upright spin with the wings horizontal
P=qg=1r=g=0 and equations 7.14, 7.15, and 7.16 yield

c, = 0 (7.17)
2

v-C I -1
_ m,b _ 4 X pr (7.18)

2uK 2 IY

Y
C = 0 (7.19)
n

What do each of these results imply about a stable condition like the
fully developed spin?

® 7.3.3.1 Pitching Moment Balance.

By examining equation 7.18 in conjunction with the Cm,b Versus a

curve for an aircraft it is at least possible to identify regions where
a fully developed spin can occur.

First, the angle of attack must be above the stall angle of attack.
This condition is obvious, since the definition of a spin demands a > og
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Second, Cm b must be opposite in sign to the inertial term on the

14
right hand side of equation 7.18.
means that Cm b must be negative.

For an upright spin this requirement
This fact is clear if one observes

14
that I, > Ix and that p and r are of the same sign in an upright spin

(figure 7.12).

5
]

In fact it is possible to express the rotation rate in
a convenient form by slightly rearranging equation 7.18.

Recall that

2
\% Cm,b

2u§2

Figure 7.12 illustrates the fact that with wing levels

P =wcos a and r = w sSin a

ANGULAR
RATES

LEFT SPIN

RIGHT SPIN
WINGS

rTwsina

FIGURE 7.12 SPIN VECTOR COMPONENTS
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Substituting into equation 7.18,

772 Iz i Ix 2

= 2 4% cos a sin a

2 '772. (7.20)

1 _ .
z (Iz Ix) sin 2 a

Equation 7.20 suggests that the minimum rotation rate occurs near an o

of 45 degrees, although strong variations in Maero may preclude this

minimum. In fact, there is one additional prerequisite which must be
satisfied before a fully developed spin can occur.

The slope of Cm p vVersus a must be negative or stabilizing and must
’

be relatively constant. This is regquired simply because a positive

dac
oD represents a divergent situation and would therefore require a

aa

pitching acceleration, q # 0._ But this angular acceleration would violate
the assumption of a constant w in a fully developed spin. Said another
way, any disturbance in angle of attack would produce a ACm b tending to

14

de,b
da

these constraints, consider figure 7.13. Aircraft B can enter a fully

(+) STALL | AIRCRAFT A 90°
[l 1 a
]

cm,b 0
o
) 45

restore Cm b to its initial value only so long as < 0. To summarize
14 .

AIRCRAFT B

e

L
I [
4s° 90°

FIGURE 7.13 AERODYNAMIC PITCHING MOMENT PREREQUISITES
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developed, upright spin at any AOA above ag insofar as the pitching
moment equation is concerned because its Cr.p Versus a is always negative

r
dc
and d?'b is always negative. However, aircraft A can meet the three

constraints imposed by the pitching equation only in the shaded areas.
Of course, the pitching moment equation is not the sole criterion; the
rolling and yawing moment equations must also be considered.

@7.3.3.2 Rolling and Yawing Moment Balance.

Equations 7.17 and 7.19 suggest at least four other conditions
which must be satisfied to have a fully developed spin occur. Although
not specifically pointed out in paragraph 7.3.3.1 all the aerodynamic
derivatives, even Cm p are functions of both «, 8, and the rotation rate

’
w (reference 9, page 6). Having considered Cm p a5 @ function of «

’
alone, it is convenient to consider C, and C; as functions of w alone.
There is little justification for this choice other than the fact the
lateral-directional derivatives are more directly linked to rotation
rate while the longitudinal derivative is more directly linked to angle
of attack. But it is well to keep in mind that all these variables do
affect Cm,b’ Cy, and Cp.

The conditions imposed by both C, and C; to allow a fully developed
spin are that the derivatives must be equal to zero and the rate of
change of the derivatives with respect to changes in w must be negative.
The first of these conditions is explicitly stated by eguations 7.17 and

dcC dc
7.19. But the second requirement <EE£ < 0 and EEE < 0) stems from the

fact that a fully developed spin must be a stable condition. If an
increase in w will produce an increased C; or Cp, then any change in
rotation rate will cause the autorotative moments to diverge away from
the supposedly stable initial condition. Figure 7.14 illustrates this
point.

F aw

c, ——_—_“‘-\\\\

-
c /ﬁ‘;'}\u .

EQUILIBRIUM

w

CL or Cn <0 tends to
restore equilibrium .

CL or cn >0 tends to
l“—>further increase w.
|

|
“e IA//’ﬁ//////
or T
Cn __,/li_ | @ ——

FIGURE 7.14 STABILIZING AND DESTABILIZING SLOPES FOR Cp AND G, VERSUS «
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Obviously, these aerodynamic prerequisites must all be met for a
fully developed spin to exist in a true equilibrium form. Of course,
oscillatory spins may occur with some relaxation of one or more of these
conditions. It is extremely rare to observe an ideal case which would
precisely meet all these conditions in an actual spin. So, while ex-
actly satisfying all these conditions is essential for a fully developed
spin to actually exist, it is common to estimate spin parameters with
less than perfect fulfillment of these prerequisites. BAn example of how
such estimations are made will be considered next.

@®7.3.4 ESTIMATION OF SPIN CHARACTERISTICS:

Reference 9, appendix B, describes in detail a method of estimating
spin characteristics which was designed to estimate initial conditions
for a computer study investigating possible steady state spin modes of
the McDonnell F-3H Demon. Although this estimation method was only in-
tended to help.predict initial conditions for the numerical integration
and thus save computer time, it serves as an excellent example of how
model data and the aerodynamic prerequisites discussed in paragraph 7.3.3
can be combined to get a "first cut" at spin characteristics.

The aerodynamic data on which this example is based were measured
by steadily rotating a model about an axis parallel to the relative wind
in a wind tunnel. Hence, no oscillations in angular rates are taken
into account. This limitation on the aerodynamic data is indicated by
the subscript "r b" (rotation-balance tunnel measurements). In addition,
the data are presented as a function of a nondimensional rotation rate,

wb
W.
rolling moment data were not as "well-behaved" as the yawing moment data,
the rolling moment data were ignored. However, all the other prerequi-
sites of paragraph 7.3.3 were observed. The estimation method is outlined
below and the interested student is referred to reference 9, page 18, for
a fuller description and a numerical example.

To help simplify the estimation process and partly because the

7.3.1.1 Detemining Cp, 4, From Aerodynamic Data.

dc
Use the EE-and o for which C = 0 and n.rb 0 to determine
AY n,rxb wb
a (=)
Ch b" This amounts to using the model data to determine aerodynamic

pitching moments for which the aerodynamic yawing moment is zero.

®7.3.4.2 Calculating Inertial Pitching Moment.

Using a modified form of equation 7.20, and recognizihg that the
inertial pitching moment is the negative of the aerodynamic pitching

moment on a fully developed spin, - Cn b is calculated.
14
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2 -

1 .
5 (IZ Ix) sin 2 a
1 2
- Cm,rb 5P VT Sh
1 .
5 (Iz Ix) sin 2 «
Solving for - cm,rb
Iz - Ix w. 2
- = L. = ~ i .2
Cm,rb 5B (V) sin 2 a (7.21)

©7.3.4.3 Comparing Aerodynamic Pitching Moment and Inertial Pitching Moment.

Plot Cm rp Versus = from the wind tunnel data (paragraph 7.3.4.1)

and the results of equation 7.21 on the same plot, like figure 7.15.

a SPIN

FIGURE 1.15 AERODYNAMIC PITCHING MOMENTS COMPARED TO -INERTIAL PITCHING MOMENTS

The intersection of the two curves indicates a possible fully developed
spin. From this plot the angle of attack of the potential spin is read
directly and the value of C b is used to calculate the potential ro-

- m,r
tation rate. ’
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@7.3.4.1 Calculation of w.

Rearranging equation 7.21,

- b
m)2= ( Cm'rb)(oS ) (7.22)

(Iz - Ix) sin 2 o

the ratio % can be calculated. But egquation 7.1 allows calculation of

V if Cp is known. The model force measurements provide Cp and then

v = N (7.23)
p S C

Nf

D

" Then, of course,

(- Cp pp) (9SD) W

Wt = . 1
(Iz - Ix)(51n 2a) 5 oS CD
-2C b W
2 _ m,rb
“ T E-(I_ - I sin 2a (7.24)
D z X

@7.3.1.5 Results.

A typical set of results from the numerical integration of the six
equations compared with the estimated parameters is given in table III
below (extracted from reference 9, pages 26, 27).

Table III

TYPICAL COMPUTER RESULTS VERSUS ESTIMATION

Computer Results Estimation

a w v a w v
(deg) (rad/sec) (ft/sec) (deqg) (rad/sec) (ft/sec)
36.0 1.88 294 38.2 1.90 285
37.0 1.92 372 45.1 1.83 327
Oscillated out of spin 48.2 1.89 453
51.8 2.18 619 50.5 2,18 620
80.0 4.72 494 70.0 3.50 515
36.5 2.80 380 37.4 2.69 365
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@7.3.5 GYROSCOPIC INFLUENCES:

Only aercdynamic moments have been considered so far in expanding
the applied external moments. Ordinarily the aerocdynamic moments are
the dominant ones, but gyroscopic influences of rotating masses can also
be important. The NF-104, for example has virtually no aerodynamic
moments at.the top of its rocket-powered zoom profile. There is con-
vincing evidence that gyroscopic moments from the engine dominate the
equations of motion at these extreme altitudes (reference 10, page 13).
The external applied moments should be generalized to include gyroscopic
influences and other miscellaneous terms (anti-spin rockets, anti-spin

chutes, etc.). The applied external moments become
= + +
Gx i Lgyro Lother
= y 4 + +
Gy Z{. Mgyro Mother
= / + +
Gz 7( Ngyro Nother

The next paragraph will consider a simplified expansion of the gyroscopic
terms.

®7.3.5.1 Gyroscope Theory.

By virtue of its rotation, a gyroscope tends to maintain its spin
axis aligned with respect to inertial space. That is, unless an external
torque is applied, the gyro spin axis will remain stationary with respect
to the fixed stars. If a torque is applied about an axis which is per-
pendicular to the spin axis, the rotor turns about a third axis which
is orthogonal to the other two axes. On removing this torgue the rota-
tion (precession) ceases - unlike an ordinary wheel on an axle which
keeps on rotating after the torgque impulse is removed.

These phenomena, all somewhat surprising when first encountered,
are consequences of Newton's laws of motion. The precessional behavior
represents obedience of the gyro to Newton's second law expressed in
rotation form, which states that torgue is equal to the time rate of
change of angular momentum.

=48 (7.25)

QJICL
t

with T = external torque applied to the gyroscope

fas}

= angular momentum of the rotating mass

H=1S2¢
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with I = moment of inertia of the rotating mass

te)
1]

angular velocity of the rotating mass

Equation 7.25 applies, like all Newton's laws, only in an inertial frame
of reference. If it assumed that-H is to be expressed within a frame of

reference rotating at the precession rate of the gyroscope, ﬁ/inertial =

H/rotating + “s x H. If the gyro spin rate is unchanged, then H measured

in the rotating frame will be zero and equation 7.25 becomes

T=w_ x H (7.26)
P _

The direction of precession for a gyro when a torgue is applied is
given by equation 7.26. This direction is such that the gyro spin axis
tends to align itself with the total angular momentum vector, which in
this case is the vector sum of the angular moment due to the spinning
rotor and the angular momentum change due the applied torgue, AH as
shown in figure 7.16. The law of precession is a reversible cone. Just
as a torque input results in an angular velocity output (precession), an
angular velocity input results in a torque output along the corresponding
axis.

ROTOR

FIGURE 1.16 DIRECTION OF PRECESSION

Three gyro axes are significant in describing gyro operation; the
torgque axis, the spin -axis and the precession axis. These are commonly
referred to as input (torgue), spin, and output (precession). The direc-
tions of these axes are shown in figure 7.17; they are such that the spin
axis rotated into the input axis gives the output axis direction by the
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right hand rule. The direction of rotational vectors such as spin,
torgque, and precession can be shown by means of the right hand rule. 1I£
the curve of the fingers of the closed right hand point in the direction
of rotation, the thumb extended will point along the axis of rotation.,
For gyro work, it is convenient to let the thimb, forefinger, and middle
finger represent the spin, torque, and precession axes respectively.
Figure 7.18 illustrates this handy memory device.

FIGURE 7.11 GYRO AXES

GYRO CASE

;./‘ :
PRECESSION
VYECTOR

FIGURE 7.18 SPIN, TORQUE AND PRECESSION VECTORS
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®7.3.5.2 kingine Gymscopic Moments.

In figure 7.19 consider the rotating mass of the engine as a gyro-
scope and analyze the external torque applied to the engine by.the engine
mounts of an aircraft in a spin. Then the total angular velocity of the
rotating mass is the vector sum of uwp + ©, with wg being the engine rpm

{assumed constant) and @ being the aircraft's spin rotation rate.

FIGURE 7.139 ANGULAR VELOCITIES OF THE ENGINE'S ROTATING MASS

u.E+Lu

.
i

~——

But w < < 'uE

“E

D
[

If one also assumes that the rotational axis of the engine is parallel to
the x-axis,

HE = IEwE *

wich IE = moment of inertia of the engine about the x-axis.
Considering figure 7.19 again and applying equation 7.26, the external

torque applied to the engine must be the precession rate of the aircraft
(&) crossed into the engine's angular momentum.

T = @ X HE

But the moment applied by the engine through the engine mounts to the
spinning aircraft is equal but opposite in sign (Newton's Third Law).
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Ggyro E

~ T r . . -T

Lgyro i 3

Mgyrof = 7P T F

Ngyro IEwE 0 0

Lgyro = 0 (7.27)
ngro = 'IENE r (7.28)
Ngyro = IE”E q (7.29)

Then equations 7.11, 7.12, and 7.13 can be expanded to

1 1 l

1 +
' AERO ‘INERTIAL COUPLINGl GYROSCOPIC TERM MISC !
: (sometimes called (an engine effect)l {rockets, !
| gyrodynamic term) | i spin chutes, |
. [ I | etc.) ;
! |
' Z I -1 ! L | L |
p =1 = 41 _X_T__E. gqr I+ _%152 + _Q%ESE (7.30)
| X i X | X ! X !
! | {
i T S M M
g =i It + 2 X pr g+ —gyro | + O‘Icher I (7.31)
| y | Y Yy | Yy |
J
. b S | N PN |
r =j _TL;_ +, _E_T__X. Ppa ,* _%XEQ t _QT_EE | (7.32)
| z ! z 1 z i z |
Equation 7.20 becomes
-7 + I w, T
wl = 177( EE (7.33)
5 (Iz - Ix) sin 2 a

Equation 7.33 shows that the effect of the engine gyroscopic moment is

to shift the curves of figure 7.13 as shown below. An engine that rotates
in a counter clockwise direction (as viewed from the tailpipe) will cause an air-

craft to spin faster in a right upright spin and slower in a left upright spin.
Generally speaking, however, this engine gyroscopic moment is negligible in com-

parison to the other external moments.
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FIGURE .20 EFFECT OF Mgyro ON SPIN ROTATION RATE
(FOR COUNTER CLOCKWISE ENGINE DUE TO NOSE DOWN PITCH)

@7 2.6 SPIN CHARACTERISTICS CF FUSELAGE-LOADED AIRCRAFT:

It is appropriate to consider briefly some of the spin character-
istics peculiar to modern high performance aircraft in which the mass is
generally cocncentrated within the fuselage (I, larger than I, and almost
as large as Iz). t can be shown that a system which has no external
moments or forces tends to rotate about its largest principal axis, which
in the case of an aircraft, is the Z axis. 1In an actual spinning aircraft,
the external moments are not zero and thus the aircraft spins about some
intermediate axis. For the idealized spin thus far considered, the pitch-
ing moment egquation leads one to the observation that fuselage-loaded air-
craft will probably spin flatter than their wing-~lcaded counterparts.

@7 3.6 | Fuselage-[.naded \ireraft Tend to Spin Flatter Than Wing-Loaded Aircraft.

For a fully develoved spin

Gy = = pr (Iz - I) (7.34)
In an aircraft, (I, - I,) can never be zero. Hence, if Gy = 0 then
p must be zerc, in which case © = rk and the spin is flat (w = pi is

excluded by the derfinition of a spin). If the spin is not flat, then
both p and r exist and, in an upright spin, have the same algebraic sign.
Because (I, - Iyx) is always positive, examination of equation 7.34 shows

that G,, must always be negative (or zero) for an upright spin.

he smaller the pitch attitude (2 in figure 7.21) the flatter the
spin, and » can be defined as sinnl % for the spin depicted in figure 7.21.

varies with the relative magnitude of (I, and I,), as can readily be
scen by rearranging equation 7.34.
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Since p becomes smaller as (I, - Iy) increases, it is clear that fuselage-
loaded aircraft tend to spin flatter than wing-locaded aircraft. But what
about the effect of increasing Iy upon the roll equation?

®7.3.6.2 Fuselage-lLoaded Aircraft Tend to Exhibit More Oscillations.

On aircraft where Iy is apprcximately equal to I, in magnitude, the
fully developed spin is more likely to be oscillatory. In the limit, if
I, = I,, the reference spin could be wing down, since any axis in the YZ
plane would be a maximum principal axis. Although these facts suggest
that the bank angle is easily disturbed and that a developed spin often
occurs with the bank angle not zero, a restoring tendency does exist
which leads to periodic oscillations in bank angle. Consider again the
rolling moment equation,
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= n - 7.35
G, PI _+qr (Iz Iy) ( )

If an "o" subscript is used to represent the reference or steady-state
conditions,

Gx, = Py I

o + qo ro (Iz - Iy)

X

If instantaneous values are represented by equation 7.35, the change in
external moments due to the perturbations of the angular acceleration and
angular velocities is

(G, - Gxo) = (p = pg) I,* @r- 9, T,) (Iz - IY)
Assuming perturbations in roll will not significantly change Iyr T Iy
and
8G, = Ap I+ g (Iz - Iy) r,
) LG I -1
sp = f—i - aq _E_f__l rg (7.36)
X X

The second term on the right side of equation 7.36 serves to damp oscilla-
tions in that it reduces the ability of perturbations in rolling moment
(4Gy) to produce perturbations in roll acceleration (4p). For fuselage-
loaded aircraft, in which (I, - Iy) is small, the damping is much reduced.
Thus, any perturbations in the motion tend to persist longer in fuselage-
loaded aircraft than they do in wing-loaded aircraft.

@ 7.3.7 SIDESLIP: -

It is beyond the scope of this course to deal with the effects of
sideslip in any detail. However, it is noteworthy that sideslip need
not be zero in a developed spin; in fact it usually is not. Reference 7,
page 535, shows that sideslip in a spin arises from two sources: wing
tilt with respect to the horizontal (¢) and the inclination of the flight
path to the vertical (n).

B = ¢ - n (7.37)

If then, one considers a spin with a helical flight path as opposed to a
vertical flight path, the inclination of the flight path to the vertical
is positive and equal to the helix angle. Then, in order to maintain

zero sideslip, the retreating wing must be inclined downwards by an amount
equal to the helix angle in order to have zero sideslip. However, it is
quite common to have fully developed spins (with the spin axis vertical,
not the flight path) with varying amounts of sideslip. Sideslip on a
stalled wing will generally increase the lift on the wing toward which

the sideslip occurs and reduce the lift on the opposite wing. It is easy
to understand that a small amount of sideslip can produce a large rolling
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moment and thereby significantly alter the balance of rolling moments.
These gualitative comments are guite cursory and the inquisitive student
may wish to pursue these effects further. Reference 7 offers an expanded
discussion, but to adequately discuss sideslip effects in any detail one
must consider all three moment equations and their coupling effects. The
consideration of sideslip leads to the general conclusion that the rolling
couple can be balanced over a wide range of angles of attack and spin
rotation rates.

B 7.4 INVERTED SPINS

Since PSG's are definitely uncontrolled aircraft motions, there is
absolutely no guarantee that all spins will be of an upright variety.
as has so far been assumed. The test pilot particularly (and operational
pilots as well) will continue to experience inverted spins and PSG's which
may be mainly inverted aircraft motions. As reference 11, page 1, points
out,

" _.inverted spins cannot be prevented by
handbook entries that 'the airplane resists
inverted spins'."

It is, therefore, essential that the test pilot have some appreciation

of the nature of the inverted PSG/spin. As usual, the analytical emphasis
will necessarily be restricted to the fully developed spin, but the guali-
tative comments which follow also apply in a general way to other types

of post-stall motion.

The most common pilot reaction to an inverted post-stall maneuver
is, "I have no idea what happened! The cockpit was full of surprise,
dirt, and confusion." Why? First, negative g flight is disconcerting
in and of itself, particularly when it is entered inadvertently. But
even experienced test pilots can be upset and their powers of observation
reduced in an anticipated inverted spin. This disorientation usually
takes one of two forms: (1) inability to distinguish whether the motion
is inverted or upright or (2) inability to determine the direction of
the spin. Each of these problems will be considered separately.

@®7.4.1 ANGLE CF ATTACK IN AN INVERTED SPIN:

The angle of attack in an inverted spin is always negative (figure
7.22). It might appear that it would be easy to determine the difference
in an upright or inverted spin; if the pilot is "hanging in the straps,"”
it is an inverted spin. Such an "analysis" is accurate in some spin modes
(the Hawker Hunter has an easily recognized smooth, flat mode such as
this); however, if the motion is highly oscillatory, not fully developed,
or a PSG, the pilot's tactile senses are just not good enough. If the
aircraft has an angle of attack indicator, this is probably the most
reliable means of determining whether the maneuver is erect or inverted.
Lacking an angle of attack system, the pilot must rely on the accelerometer
or his sensory cues, neither of which are easy to interpret. But what
about determining spin direction?

7.35




+z

UPRIGHT SPIN

+x
o0 __ P
*x a<° —
RELATIVE WIND +x

RELATIVE WIND

INVERTED SPIN

FIGURE 7.22 ANGLE OF ATTACK IN AN INVERTED SPIN

@7.4.2 ROLL AND YAW DIRECTIONS IN AN INVERTED SPIN:

Consider two identical aircraft, one in an upright spin and the
other in an inverted spin as shown in figure 7.23. Notice that the spin
direction in either an upright or an inverted spin is determined by the
sense of the yaw rate. Notice also that in an inverted spin the sense
of the roll rate is always opposite to that of the yaw rate. It is common
for pilots to mistakenly take the direction of roll as the spin direction.
The chances of making this error are considerably enhanced during a PSG
or the incipient phase of the spin when oscillations are extreme. 1In
steep inverted spins (|a| nearly equals |ag|) the rolling motion is the
largest rotation rate and further adds to the confusion. However, there
is a reliable cockpit instrument, the turn needle, which always indicates
the direction of yaw. With such confusion possible, what about the pre-
viously obtained equations of motion? Is it necessary to modify them for
the inverted spin?
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®°.13 APPLICABILITY OF EQUATIONS OF MOTION:

All the eguations previously described are directly applicable to
the inverted spin. Of course, the differences in sign for angle of attack
and the dearth of aercdynamic data collected at negative angle of attack
pose a significant practical problem in trying to do detailed analyses
of the inverted spin. But for the qualitative purposes of this course,
However, it is instructive to note
the difference in the sense of the pitching moments between an upright
and an inverted spin. Recall that in an upright spin the applied external
pitching moment (dominated by the aerodynamic pitching moment) had to be
negative to balance the inertia couple, as equation 7.34 for a fully

the equations of motion are usable.

developed spin shows.

Gy = - pr (Iz - IX)

(7.34)

But when p and r are of opposite, as in the inverted spin, the applied
This fact is illustrated in figure
7.24, where the mass of the aircraft is represented as a rotating dumb-

external moment must be positive.

bell.

/
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It is apparent that in the inverted spin the external pitching moment
is positive; that is, expressed as a vector, it lies along the positive
y-axis. As a final point, the recovery from PSG's/spihs, both erect and
inverted, must be examined in some detail.

B 1.5 RECOVERY

Obtaining developed spins today is generally difficult, but when
obtained, the factors that make it difficult to obtain this type of spin
may also make it difficult to recover from the spin. Current and future
aircraft designs may be compromised too much for their intended uses to
provide adequate aerodynamic control for termination of the developed
spin; also, there is a problem of pilot disorientation associated with
developed spins. As a result, the PSG and the incipient phase of the spin
must be given more attention than they have received in the past, and
preventing the developed spin- through good design and/or proper control
techniques has become a primary consideration.

Current aircraft have weights which are appreciably larger and have
moments of inertia about the Y and 2 axes which may be ten times as large
as those of World War II aircraft. With the resulting high angular momen-
tum, it is difficult for a spin to be terminated as effectively as a spin
in earlier airplanes by aerodynamic controls which are generally of similar
size. Furthermore, controls which are effective in normal flight may be
inadequate for recovery from the spin unless sufficient consideration has
been given to this problem in the design phase.

@7.5.1 TERMINOLOGY:

The recovery phase terminology was purposely omitted from paragraph
7.1.4 for inclusion here. Referring to figure 7.1, the whole of the re-
covery phase begins when the pilot initiates recovery controls and ends
when the aircraft is in straight flight; however, there are several terms
used to differentiate between the subparts of this whole phase.
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®7.5.1.1 Recovery.

Recovery is defined as the transitional event from out-of-control
conditions to controlled flight. In more usable terms, this period of
time normally is counted from the time the pilot initiates recovery con-
trols and that point at which the angle of attack is below ag and no sig-
nificant uncommanded angular motions remain. The key phrase in this
expanded definition is "angle of attack below ag;" once this objective is
attained the aircraft can be brought back under control provided there
are sufficient altitude and airspeed margins to maneuver out of whatever
unusual attitude ensues.

@ 7.5.1.2 Dive Pullout and Total Recovery Altitude.

The dive pullout is the transition from the termination of recovery
to level flight. Total recovery altitude is the sum of the altitude
losses during the recovery and dive pullout. Notice that reference 3,
paragraph 3.4.2.2.2, specifies altitude loss during recovery - not total
recovery altitude.

@ 7.5.2 ALTERATION OF AERODYNAMIC MOMENTS:

The balanced conditi